SentenceTransformer based on Qwen/Qwen3-Embedding-0.6B
This is a sentence-transformers model finetuned from Qwen/Qwen3-Embedding-0.6B. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Qwen/Qwen3-Embedding-0.6B
- Maximum Sequence Length: 32768 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 32768, 'do_lower_case': False, 'architecture': 'Qwen3Model'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("JacobLinCool/Qwen3-Embedding-0.6B-GIR-1")
# Run inference
queries = [
"Generates samples of text from the provided vocabulary.\n\n Args:\n plain_vocab: vocabulary.\n distribution: distribution.\n train_samples: samples for training.\n length: length.\n\n Returns:\n train_indices (np.array of Integers): random integers for training.\n shape = [num_samples, length]\n test_indices (np.array of Integers): random integers for testing.\n shape = [num_samples, length]\n plain_vocab (list of Integers): unique vocabularies.",
]
documents = [
'def generate_plaintext_random(plain_vocab, distribution, train_samples,\n length):\n \n if distribution is not None:\n assert len(distribution) == len(plain_vocab)\n\n train_indices = np.random.choice(\n range(len(plain_vocab)), (train_samples, length), p=distribution)\n\n return train_indices',
'def switch(self, name):\n \n try:\n switch = self.storage[self.__namespaced(name)]\n except KeyError:\n if not self.autocreate:\n raise ValueError("No switch named registered in " % (name, self.namespace))\n\n switch = self.__create_and_register_disabled_switch(name)\n\n switch.manager = self\n return switch',
'def late_filling(target, pressure=,\n Pc_star=,\n Swp_star=0.2, eta=3):\n r\n element = pressure.split()[0]\n network = target.project.network\n phase = target.project.find_phase(target)\n pc_star = phase[Pc_star]\n Pc = phase[pressure]\n \n Ts = network.map_throats(throats=target.Ts, origin=target)\n values = values[Ts]\n else:\n Ps = network.map_pores(pores=target.Ps, origin=target)\n values = values[Ps]\n return values',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 1024] [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[ 0.8344, -0.0822, 0.0233]])
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.99 |
cosine_accuracy@5 | 1.0 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.99 |
cosine_precision@3 | 0.3333 |
cosine_precision@5 | 0.2 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.99 |
cosine_recall@3 | 1.0 |
cosine_recall@5 | 1.0 |
cosine_recall@10 | 1.0 |
cosine_ndcg@1 | 0.99 |
cosine_ndcg@5 | 0.9963 |
cosine_ndcg@10 | 0.9963 |
cosine_mrr@1 | 0.99 |
cosine_mrr@5 | 0.995 |
cosine_mrr@10 | 0.995 |
cosine_map@100 | 0.995 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 400 training samples
- Columns:
query
andcode
- Approximate statistics based on the first 400 samples:
query code type string string details - min: 2 tokens
- mean: 67.12 tokens
- max: 3156 tokens
- min: 24 tokens
- mean: 126.98 tokens
- max: 1236 tokens
- Samples:
query code For memory actions, get a list of addresses it operates on.
:param SimAction action: The action object to work with.
:return: A list of addresses that are accessed with that action.
:rtype: listdef _get_actual_addrs(action, state):
if action.actual_addrs is None:
addr_list = {0x60000000}
else:
addr_list = set(action.actual_addrs)
return addr_listConstruct the input file of the calculation.
def make_input(self, with_header=False):
s = str(self.input)
if with_header: s = str(self) + "\n" + s
return sCheck worker status route
def check_worker_status():
if not in request.args:
resp = {"status": "bad request"}
return jsonify(**resp)
else:
worker_id = request.args[]
assignment_id = request.args[]
allow_repeats = CONFIG.getboolean(, )
if allow_repeats:
try:
part = Participant.query.<br> filter(Participant.workerid == worker_id).<br> filter(Participant.assignmentid == assignment_id).one()
status = part.status
except exc.SQLAlchemyError:
status = NOT_ACCEPTED
else:
try:
matches = Participant.query.<br> filter(Participant.workerid == worker_id).all()
numrecs = len(matches)
if numrecs==0:
status = NOT_ACCEPTED
else:
status = max([record.status for record in matches])
except exc.SQLAlchemyError:
... - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Evaluation Dataset
Unnamed Dataset
- Size: 100 evaluation samples
- Columns:
query
andcode
- Approximate statistics based on the first 100 samples:
query code type string string details - min: 5 tokens
- mean: 66.56 tokens
- max: 548 tokens
- min: 24 tokens
- mean: 142.11 tokens
- max: 901 tokens
- Samples:
query code Return the value of the android prefixed attribute in a specific tag.
This function will always try to get the attribute with a android: prefix first,
and will try to return the attribute without the prefix, if the attribute could not be found.
This is useful for some broken AndroidManifest.xml, where no android namespace is set,
but could also indicate malicious activity (i.e. wrongly repackaged files).
A warning is printed if the attribute is found without a namespace prefix.
If you require to get the exact result you need to query the tag directly:
example::
>>> from lxml.etree import Element
>>> tag = Element('bar', nsmap={'android': 'http://schemas.android.com/apk/res/android'})
>>> tag.set('{http://schemas.android.com/apk/res/android}foobar', 'barfoo')
>>> tag.set('name', 'baz')
# Assume thata
is some APK object
>>> a.get_value_from_tag(tag, 'name'...def get_value_from_tag(self, tag, attribute):
value = tag.get(self._ns(attribute))
if value is None:
value = tag.get(attribute)
if value:
log.warning("Failed to get the attribute on tag with namespace. "
"But found the same attribute without namespace!".format(attribute, tag.tag))
return valueGet information about this object as a dictionary. Used by WebSocket interface to pass some
relevant information to client applications.def get_as_datadict(self):
return dict(type=self.class.name, tags=list(self.tags))Makes forecast with the estimated model
Parameters
----------
h : int (default : 5)
How many steps ahead would you like to forecast?
past_values : int (default : 20)
How many past observations to show on the forecast graph?
intervals : Boolean
Would you like to show 95% prediction intervals for the forecast?
Returns
----------
- Plot of the forecastdef plot_predict(self,h=5,past_values=20,intervals=True,**kwargs):
import matplotlib.pyplot as plt
import seaborn as sns
figsize = kwargs.get(,(10,7))
if self.latent_variables.estimated is False:
raise Exception("No latent variables estimated!")
else:
scale, shape, skewness = self._get_scale_and_shape(self.latent_variables.get_z_values(transformed=True))
previous_value = self.data[-1]
forecasted_values = np.ones(h)*self.states[-1]
date_index = self.shift_dates(h)
simulations = 10000
sim_vector = np.zeros([simulations,h])
t_params = self.transform_z()
for n in range(0,simulations):
rnd_q = np.random.normal(0,np.sqrt(self.latent_variables.get_z_values(transformed=True)[0]),h)
exp = forecasted_values.copy()
for t in range(0,h):
if t == 0:... - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 1warmup_ratio
: 0.1seed
: 2025bf16
: Trueload_best_model_at_end
: Trueoptim
: adamw_torchpush_to_hub
: Truehub_model_id
: JacobLinCool/Qwen3-Embedding-0.6B-GIR-1hub_private_repo
: Falsegradient_checkpointing
: Trueeval_on_start
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 2025data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config
: Nonedeepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: JacobLinCool/Qwen3-Embedding-0.6B-GIR-1hub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Truegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | Validation Loss | cosine_ndcg@10 |
---|---|---|---|
0 | 0 | 0.0616 | 0.9926 |
1.0 | 7 | 0.0358 | 0.9963 |
-1 | -1 | - | 0.9963 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 5.1.1
- Transformers: 4.56.2
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.1.1
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 45
Model tree for JacobLinCool/Qwen3-Embedding-0.6B-GIR-1
Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.990
- Cosine Accuracy@5 on Unknownself-reported1.000
- Cosine Accuracy@10 on Unknownself-reported1.000
- Cosine Precision@1 on Unknownself-reported0.990
- Cosine Precision@3 on Unknownself-reported0.333
- Cosine Precision@5 on Unknownself-reported0.200
- Cosine Precision@10 on Unknownself-reported0.100
- Cosine Recall@1 on Unknownself-reported0.990
- Cosine Recall@3 on Unknownself-reported1.000
- Cosine Recall@5 on Unknownself-reported1.000