whisper-large-v3-turbo-ami-disfluent-decoder
This model is a fine-tuned version of openai/whisper-large-v3-turbo on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2787
- Wer: 8.5361
- Cer: 4.3966
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
No log | 0 | 0 | 2.8591 | 23.2283 | 14.9979 |
0.3071 | 0.1 | 500 | 0.2623 | 9.2208 | 4.7068 |
0.2188 | 1.0748 | 1000 | 0.2464 | 9.7893 | 5.1491 |
0.1338 | 2.0496 | 1500 | 0.2448 | 8.4231 | 4.2760 |
0.0891 | 3.0244 | 2000 | 0.2530 | 9.1776 | 4.8046 |
0.0864 | 3.1244 | 2500 | 0.2500 | 8.5760 | 4.3873 |
0.0584 | 4.0992 | 3000 | 0.2635 | 8.4729 | 4.3588 |
0.0344 | 5.074 | 3500 | 0.2707 | 8.4829 | 4.3645 |
0.0269 | 6.0488 | 4000 | 0.2763 | 8.5461 | 4.3987 |
0.0224 | 7.0236 | 4500 | 0.2787 | 8.5295 | 4.4058 |
0.025 | 7.1236 | 5000 | 0.2787 | 8.5361 | 4.3966 |
Framework versions
- Transformers 4.54.0
- Pytorch 2.8.0.dev20250319+cu128
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for JacobLinCool/whisper-large-v3-turbo-ami-disfluent-decoder
Base model
openai/whisper-large-v3
Finetuned
openai/whisper-large-v3-turbo