|
---
|
|
library_name: transformers
|
|
license: apache-2.0
|
|
base_model: google/mt5-small
|
|
tags:
|
|
- summarization
|
|
- generated_from_trainer
|
|
model-index:
|
|
- name: mt5-small-finetuned-amazon-en-es
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# mt5-small-finetuned-amazon-en-es
|
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 2.0229
|
|
- Bertscore Precision: 0.7189
|
|
- Bertscore Recall: 0.6939
|
|
- Bertscore F1: 0.7056
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 5.6e-05
|
|
- train_batch_size: 24
|
|
- eval_batch_size: 24
|
|
- seed: 42
|
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 8
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bertscore Precision | Bertscore Recall | Bertscore F1 |
|
|
|:-------------:|:-----:|:-----:|:---------------:|:-------------------:|:----------------:|:------------:|
|
|
| 2.5119 | 1.0 | 1557 | 2.2031 | 0.711 | 0.6852 | 0.6972 |
|
|
| 2.5009 | 2.0 | 3114 | 2.1234 | 0.7154 | 0.6875 | 0.7005 |
|
|
| 2.4158 | 3.0 | 4671 | 2.0854 | 0.7165 | 0.6914 | 0.7032 |
|
|
| 2.3603 | 4.0 | 6228 | 2.0629 | 0.7166 | 0.6911 | 0.703 |
|
|
| 2.3206 | 5.0 | 7785 | 2.0451 | 0.7191 | 0.6934 | 0.7054 |
|
|
| 2.2938 | 6.0 | 9342 | 2.0328 | 0.718 | 0.6934 | 0.7049 |
|
|
| 2.2718 | 7.0 | 10899 | 2.0253 | 0.7191 | 0.6944 | 0.706 |
|
|
| 2.2622 | 8.0 | 12456 | 2.0229 | 0.7189 | 0.6939 | 0.7056 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.48.3
|
|
- Pytorch 2.7.1+cu118
|
|
- Datasets 2.14.6
|
|
- Tokenizers 0.21.1
|
|
|