Asteroid model JorisCos/VAD_Net
Description:
This model was trained by Joris Cosentino using the librimix recipe in Asteroid.
It was trained on the enh_single
task of the Libri1Mix dataset.
Training config:
data:
segment: 3
train_dir: /home/jcosentino/VAD_dataset/metadata/sets/train.json
valid_dir: /home/jcosentino/VAD_dataset/metadata/sets/dev.json
filterbank:
kernel_size: 16
n_filters: 512
stride: 8
main_args:
exp_dir: exp/full_not_causal_f1/
help: null
masknet:
bn_chan: 128
causal: false
hid_chan: 512
mask_act: relu
n_blocks: 3
n_repeats: 5
skip_chan: 128
optim:
lr: 0.001
optimizer: adam
weight_decay: 0.0
positional arguments: {}
training:
batch_size: 8
early_stop: true
epochs: 200
half_lr: true
num_workers: 4
Results:
On LibriVAD min test set :
accuracy: 0.8196149023502931,
precision: 0.8305009048356607,
recall: 0.8869202491310206,
f1_score: 0.8426184545700124
License notice:
This work "VAD_Net" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov, used under CC BY 4.0; of The DNS challenge noises, Attribution-ShareAlike 3.0 Unported. "VAD_Net" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino
- Downloads last month
- 5