JoshuaKelleyDs's picture
Model save
e14fbdc verified
|
raw
history blame contribute delete
2.3 kB
---
license: other
base_model: apple/mobilevit-xx-small
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: quickdraw-MobileViT-xxs-a
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# quickdraw-MobileViT-xxs-a
This model is a fine-tuned version of [apple/mobilevit-xx-small](https://huggingface.co/apple/mobilevit-xx-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1512
- Accuracy: 0.7126
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0008
- train_batch_size: 512
- eval_batch_size: 512
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5000
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:-----:|:---------------:|:--------:|
| 1.8007 | 0.5688 | 5000 | 1.7490 | 0.5725 |
| 1.5116 | 1.1377 | 10000 | 1.5185 | 0.6256 |
| 1.4298 | 1.7065 | 15000 | 1.4384 | 0.6438 |
| 1.3622 | 2.2753 | 20000 | 1.3908 | 0.6547 |
| 1.332 | 2.8441 | 25000 | 1.3210 | 0.6712 |
| 1.2903 | 3.4130 | 30000 | 1.2758 | 0.6824 |
| 1.2693 | 3.9818 | 35000 | 1.2592 | 0.6864 |
| 1.2391 | 4.5506 | 40000 | 1.2169 | 0.6965 |
| 1.2078 | 5.1195 | 45000 | 1.1928 | 0.7023 |
| 1.1959 | 5.6883 | 50000 | 1.1779 | 0.7059 |
| 1.1749 | 6.2571 | 55000 | 1.1669 | 0.7083 |
| 1.1713 | 6.8259 | 60000 | 1.1564 | 0.7110 |
| 1.1573 | 7.3948 | 65000 | 1.1524 | 0.7123 |
| 1.1555 | 7.9636 | 70000 | 1.1512 | 0.7126 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.2.1
- Datasets 2.19.1
- Tokenizers 0.19.1