|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import soundfile as sf |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from peft import LoraConfig, TaskType, get_peft_model |
|
from transformers import ( |
|
WhisperFeatureExtractor, |
|
WhisperModel, |
|
|
|
LlamaTokenizer |
|
) |
|
from modeling_llama import LlamaForCausalLM |
|
import librosa |
|
from beats.BEATs import BEATsConfig, BEATs |
|
from qformer.Qformer import BertConfig, BertLMHeadModel |
|
from typing import List, Optional, Tuple, Union |
|
|
|
IGNORE_INDEX = -100 |
|
|
|
|
|
class SALMONN(nn.Module): |
|
def __init__(self, ckpt, whisper_path, beats_path, vicuna_path, |
|
speech_qformer_token_num=1, speech_qformer_layer=2, |
|
lora=True, lora_alpha=32, lora_rank=8, lora_dropout=0.1, |
|
second_per_frame=0.333333, second_stride=0.333333, compute_dtype=torch.float16): |
|
|
|
super().__init__() |
|
|
|
|
|
self.feature_extractor = WhisperFeatureExtractor.from_pretrained(whisper_path) |
|
|
|
|
|
self.speech_encoder = WhisperModel.from_pretrained(whisper_path).encoder |
|
for name, param in self.speech_encoder.named_parameters(): |
|
param.requires_grad = False |
|
self.ln_speech = nn.LayerNorm(self.speech_encoder.config.d_model) |
|
print('Whisper model loaded ........') |
|
|
|
|
|
self.beats_ckpt = beats_path |
|
beats_checkpoint = torch.load(self.beats_ckpt, map_location='cpu') |
|
beats = BEATs(BEATsConfig(beats_checkpoint['cfg'])) |
|
beats.load_state_dict(beats_checkpoint['model']) |
|
self.beats = beats |
|
for name, param in self.beats.named_parameters(): |
|
param.requires_grad = False |
|
self.beats.eval() |
|
self.ln_audio = nn.LayerNorm(self.beats.cfg.encoder_embed_dim) |
|
print('Beats model loaded ........') |
|
|
|
|
|
self.speech_Qformer, self.speech_query_tokens = self.init_speech_Qformer( |
|
speech_qformer_token_num, |
|
self.speech_encoder.config.d_model + self.beats.cfg.encoder_embed_dim, |
|
speech_qformer_layer, |
|
) |
|
self.second_per_frame = second_per_frame |
|
self.second_stride = second_stride |
|
print('Qformer model initialised ........') |
|
|
|
|
|
self.llama_model = LlamaForCausalLM.from_pretrained(vicuna_path, torch_dtype=compute_dtype) |
|
self.config = self.llama_model.config |
|
print('Vicuna model loaded ........') |
|
|
|
|
|
self.lora = lora |
|
if lora: |
|
target_modules = None |
|
self.peft_config = LoraConfig( |
|
task_type=TaskType.CAUSAL_LM, inference_mode=False, target_modules=target_modules, |
|
r=lora_rank, lora_alpha=lora_alpha, lora_dropout=lora_dropout, |
|
) |
|
self.llama_model = get_peft_model(self.llama_model, self.peft_config) |
|
print('Added LoRA ........') |
|
|
|
|
|
self.tokenizer = LlamaTokenizer.from_pretrained(vicuna_path, use_fast=False) |
|
self.tokenizer.add_special_tokens({'pad_token': '[PAD]'}) |
|
self.tokenizer.padding_side = "right" |
|
|
|
|
|
self.speech_llama_proj = nn.Linear(self.speech_Qformer.config.hidden_size, self.llama_model.config.hidden_size) |
|
|
|
|
|
print('Loading Parameters ........') |
|
ckpt_dict = torch.load(ckpt, map_location='cpu') |
|
if 'model' in ckpt_dict: |
|
ckpt_dict = ckpt_dict['model'] |
|
for name, param in ckpt_dict.items(): |
|
if name in self.state_dict(): |
|
print('Loaded:', name) |
|
self.load_state_dict(ckpt_dict, strict=False) |
|
|
|
def forward( |
|
self, |
|
input_ids, labels, speeches, audios, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
): |
|
speech_embeds, sources, targets = [], [], [] |
|
for speech_embed, audio_embed, input_id, label in zip(speeches, audios, input_ids, labels): |
|
speech_embed, audio_embed = speech_embed.to('cuda'), audio_embed.to('cuda') |
|
|
|
speech_embed = self.ln_speech(speech_embed) |
|
audio_embed = self.ln_audio(audio_embed) |
|
audio_embed = F.pad(audio_embed, (0, 0, 0, speech_embed.size(1) - audio_embed.size(1))) |
|
speech_embed = torch.cat([speech_embed, audio_embed], dim=-1) |
|
|
|
|
|
B, T, C = speech_embed.shape |
|
kernel, stride = round(T * self.second_per_frame / 30.0), round(T * self.second_stride / 30.0) |
|
kernel, stride = (1, kernel), (1, stride) |
|
speech_embeds_tr = speech_embed.transpose(1, 2).unsqueeze(2) |
|
speech_embeds_overlap = F.unfold(speech_embeds_tr, kernel_size=kernel, dilation=1, padding=0, stride=stride) |
|
_, _, L = speech_embeds_overlap.shape |
|
speech_embeds_overlap = speech_embeds_overlap.view(B, -1, kernel[1], L) |
|
speech_embeds_overlap = torch.permute(speech_embeds_overlap, [0, 3, 2, 1]) |
|
speech_embed = speech_embeds_overlap.reshape(-1, kernel[1], C) |
|
speech_atts = torch.ones(speech_embed.size()[:-1], dtype=torch.long, device=speech_embed.device) |
|
|
|
|
|
query_tokens = self.speech_query_tokens.expand(speech_embed.shape[0], -1, -1) |
|
query_output = self.speech_Qformer.bert( |
|
query_embeds=query_tokens, |
|
encoder_hidden_states=speech_embed, |
|
encoder_attention_mask=speech_atts, |
|
return_dict=True, |
|
use_cache=False |
|
) |
|
speech_embed = self.speech_llama_proj(query_output.last_hidden_state) |
|
speech_embed = speech_embed.view(B, -1, speech_embed.size(2)).contiguous() |
|
|
|
sources.append( |
|
torch.concat([ |
|
torch.LongTensor([self.tokenizer.bos_token_id]).to(input_id[0].device), |
|
input_id[0], |
|
torch.LongTensor([self.tokenizer.bos_token_id] * speech_embed.shape[1]).to(input_id[0].device), |
|
input_id[1], |
|
torch.LongTensor([self.tokenizer.eos_token_id]).to(input_id[0].device), |
|
]) |
|
) |
|
targets.append( |
|
torch.concat([ |
|
torch.LongTensor([IGNORE_INDEX]).to(label[0].device), |
|
label[0], |
|
torch.LongTensor([IGNORE_INDEX] * speech_embed.shape[1]).to(label[0].device), |
|
label[1], |
|
torch.LongTensor([self.tokenizer.eos_token_id]).to(label[0].device), |
|
]) |
|
) |
|
speech_embeds.append(speech_embed) |
|
|
|
start_length = len(input_ids[0][0]) + 1 |
|
|
|
|
|
PADDING_TOKEN = 0 |
|
embed_tokens = self.llama_model.model.model.embed_tokens if self.lora else self.llama_model.model.embed_tokens |
|
|
|
input_ids = torch.nn.utils.rnn.pad_sequence(sources, batch_first=True, padding_value=PADDING_TOKEN) |
|
labels = torch.nn.utils.rnn.pad_sequence(targets, batch_first=True, padding_value=PADDING_TOKEN) |
|
attention_mask = input_ids.ne(PADDING_TOKEN) |
|
|
|
inputs_embeds = [] |
|
for input_id, speech_embed in zip(input_ids, speech_embeds): |
|
left_embeds = embed_tokens(input_id[:start_length]) |
|
right_embeds = embed_tokens(input_id[start_length + speech_embed.shape[1]:]) |
|
concat_tensor = torch.concat([left_embeds, speech_embed[0], right_embeds], dim=0).contiguous() |
|
inputs_embeds.append(concat_tensor) |
|
|
|
inputs_embeds = torch.stack(inputs_embeds) |
|
|
|
return self.llama_model.forward( |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
labels=labels, |
|
use_cache=False, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict |
|
) |
|
|
|
def generate( |
|
self, |
|
wav_path, prompt, prompt_pattern="USER: <Speech><SpeechHere></Speech> {}\nASSISTANT:", device='cuda:0', |
|
max_length=2048, num_beams=4, do_sample=True, min_length=1, top_p=0.9, top_k=50, |
|
repetition_penalty=1.0, length_penalty=1.0, temperature=1.0, bdr=(0, 240), num_return_sequences=1 |
|
): |
|
|
|
wav, sr = sf.read(wav_path) |
|
if len(wav.shape) == 2: |
|
wav = wav[:, 0] |
|
wav = wav[int(bdr[0] * sr): int(bdr[1] * sr)] |
|
if sr != 16000: |
|
wav = librosa.resample(wav, orig_sr=sr, target_sr=16000, res_type="fft") |
|
|
|
|
|
spectrogram = self.feature_extractor(wav, return_tensors="pt", sampling_rate=16000).input_features.to( |
|
device) |
|
speech_embeds = self.speech_encoder(spectrogram, return_dict=True).last_hidden_state |
|
|
|
|
|
raw_wav = torch.from_numpy(wav).to(device).unsqueeze(0) |
|
audio_padding_mask = torch.zeros(raw_wav.shape, device=device).bool() |
|
audio_embeds, _ = self.beats.extract_features(raw_wav, padding_mask=audio_padding_mask, feature_only=True) |
|
|
|
|
|
speech_embeds = self.ln_speech(speech_embeds) |
|
audio_embeds = self.ln_audio(audio_embeds) |
|
audio_embeds = F.pad(audio_embeds, (0, 0, 0, speech_embeds.size(1) - audio_embeds.size(1))) |
|
speech_embeds = torch.cat([speech_embeds, audio_embeds], dim=-1) |
|
|
|
|
|
B, T, C = speech_embeds.shape |
|
kernel, stride = round(T * self.second_per_frame / 30.0), round(T * self.second_stride / 30.0) |
|
kernel, stride = (1, kernel), (1, stride) |
|
speech_embeds_tr = speech_embeds.transpose(1, 2).unsqueeze(2) |
|
speech_embeds_overlap = F.unfold(speech_embeds_tr, kernel_size=kernel, dilation=1, padding=0, stride=stride) |
|
_, _, L = speech_embeds_overlap.shape |
|
speech_embeds_overlap = speech_embeds_overlap.view(B, -1, kernel[1], L) |
|
speech_embeds_overlap = torch.permute(speech_embeds_overlap, [0, 3, 2, 1]) |
|
speech_embeds = speech_embeds_overlap.reshape(-1, kernel[1], C) |
|
speech_atts = torch.ones(speech_embeds.size()[:-1], dtype=torch.long, device=speech_embeds.device) |
|
|
|
|
|
query_tokens = self.speech_query_tokens.expand(speech_embeds.shape[0], -1, -1) |
|
query_output = self.speech_Qformer.bert( |
|
query_embeds=query_tokens, |
|
encoder_hidden_states=speech_embeds, |
|
encoder_attention_mask=speech_atts, |
|
return_dict=True, |
|
) |
|
speech_embeds = self.speech_llama_proj(query_output.last_hidden_state) |
|
speech_embeds = speech_embeds.view(B, -1, speech_embeds.size(2)).contiguous() |
|
|
|
|
|
embed_tokens = self.llama_model.model.model.embed_tokens if self.lora else self.llama_model.model.embed_tokens |
|
prompt_left, prompts_right = prompt_pattern.format(prompt).split('<SpeechHere>') |
|
|
|
prompt_left_ids = self.tokenizer(prompt_left, return_tensors="pt", add_special_tokens=False).to( |
|
speech_embeds.device).input_ids |
|
prompt_left_embeds = embed_tokens(prompt_left_ids) |
|
|
|
prompt_right_ids = self.tokenizer(prompts_right, return_tensors="pt", add_special_tokens=False).to( |
|
speech_embeds.device).input_ids |
|
prompt_right_embeds = embed_tokens(prompt_right_ids) |
|
|
|
bos_embeds = self.llama_model.model.embed_tokens( |
|
torch.ones([1, 1], dtype=torch.long, device=device) * self.tokenizer.bos_token_id |
|
) if not self.lora else self.llama_model.model.model.embed_tokens( |
|
torch.ones([1, 1], dtype=torch.long, device=device) * self.tokenizer.bos_token_id |
|
) |
|
|
|
embeds = torch.cat([bos_embeds, prompt_left_embeds, speech_embeds, prompt_right_embeds], dim=1) |
|
atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device) |
|
|
|
|
|
output = self.llama_model.generate( |
|
inputs_embeds=embeds, |
|
max_length=max_length, |
|
num_beams=num_beams, |
|
do_sample=do_sample, |
|
min_length=min_length, |
|
top_p=top_p, |
|
top_k=top_k, |
|
repetition_penalty=repetition_penalty, |
|
length_penalty=length_penalty, |
|
temperature=temperature, |
|
num_return_sequences=num_return_sequences, |
|
attention_mask=atts, |
|
bos_token_id=self.tokenizer.bos_token_id, |
|
eos_token_id=self.tokenizer.eos_token_id, |
|
pad_token_id=self.tokenizer.pad_token_id, |
|
|
|
) |
|
|
|
output_text = self.tokenizer.batch_decode(output, add_special_tokens=False, skip_special_tokens=True) |
|
|
|
|
|
return output_text |
|
|
|
def init_speech_Qformer(self, num_query_token, speech_width, num_hidden_layers=2): |
|
encoder_config = BertConfig() |
|
encoder_config.num_hidden_layers = num_hidden_layers |
|
encoder_config.encoder_width = speech_width |
|
encoder_config.add_cross_attention = True |
|
encoder_config.cross_attention_freq = 1 |
|
encoder_config.query_length = num_query_token |
|
Qformer = BertLMHeadModel(config=encoder_config) |
|
query_tokens = nn.Parameter( |
|
torch.zeros(1, num_query_token, encoder_config.hidden_size) |
|
) |
|
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range) |
|
return Qformer, query_tokens |
|
|