English
music
FUTGA / model.py
JoshuaW1997's picture
Upload 12 files
bd2d17d verified
raw
history blame
14.6 kB
# Copyright (2023) Tsinghua University, Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import soundfile as sf
import torch.nn as nn
import torch.nn.functional as F
from peft import LoraConfig, TaskType, get_peft_model
from transformers import (
WhisperFeatureExtractor,
WhisperModel,
# LlamaForCausalLM,
LlamaTokenizer
)
from modeling_llama import LlamaForCausalLM
import librosa
from beats.BEATs import BEATsConfig, BEATs
from qformer.Qformer import BertConfig, BertLMHeadModel
from typing import List, Optional, Tuple, Union
IGNORE_INDEX = -100
class SALMONN(nn.Module):
def __init__(self, ckpt, whisper_path, beats_path, vicuna_path,
speech_qformer_token_num=1, speech_qformer_layer=2,
lora=True, lora_alpha=32, lora_rank=8, lora_dropout=0.1,
second_per_frame=0.333333, second_stride=0.333333, compute_dtype=torch.float16):
super().__init__()
# feature_extractor
self.feature_extractor = WhisperFeatureExtractor.from_pretrained(whisper_path)
# whisper
self.speech_encoder = WhisperModel.from_pretrained(whisper_path).encoder
for name, param in self.speech_encoder.named_parameters():
param.requires_grad = False
self.ln_speech = nn.LayerNorm(self.speech_encoder.config.d_model)
print('Whisper model loaded ........')
# beats
self.beats_ckpt = beats_path
beats_checkpoint = torch.load(self.beats_ckpt, map_location='cpu')
beats = BEATs(BEATsConfig(beats_checkpoint['cfg']))
beats.load_state_dict(beats_checkpoint['model'])
self.beats = beats
for name, param in self.beats.named_parameters():
param.requires_grad = False
self.beats.eval()
self.ln_audio = nn.LayerNorm(self.beats.cfg.encoder_embed_dim)
print('Beats model loaded ........')
# init speech Qformer
self.speech_Qformer, self.speech_query_tokens = self.init_speech_Qformer(
speech_qformer_token_num,
self.speech_encoder.config.d_model + self.beats.cfg.encoder_embed_dim,
speech_qformer_layer,
)
self.second_per_frame = second_per_frame
self.second_stride = second_stride
print('Qformer model initialised ........')
# vicuna
self.llama_model = LlamaForCausalLM.from_pretrained(vicuna_path, torch_dtype=compute_dtype)
self.config = self.llama_model.config
print('Vicuna model loaded ........')
# lora
self.lora = lora
if lora:
target_modules = None
self.peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM, inference_mode=False, target_modules=target_modules,
r=lora_rank, lora_alpha=lora_alpha, lora_dropout=lora_dropout,
)
self.llama_model = get_peft_model(self.llama_model, self.peft_config)
print('Added LoRA ........')
# tokenizer
self.tokenizer = LlamaTokenizer.from_pretrained(vicuna_path, use_fast=False)
self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
self.tokenizer.padding_side = "right"
# proj
self.speech_llama_proj = nn.Linear(self.speech_Qformer.config.hidden_size, self.llama_model.config.hidden_size)
# load ckpt
print('Loading Parameters ........')
ckpt_dict = torch.load(ckpt, map_location='cpu')
if 'model' in ckpt_dict:
ckpt_dict = ckpt_dict['model']
for name, param in ckpt_dict.items():
if name in self.state_dict():
print('Loaded:', name)
self.load_state_dict(ckpt_dict, strict=False)
def forward(
self,
input_ids, labels, speeches, audios,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
speech_embeds, sources, targets = [], [], []
for speech_embed, audio_embed, input_id, label in zip(speeches, audios, input_ids, labels):
speech_embed, audio_embed = speech_embed.to('cuda'), audio_embed.to('cuda')
# auditory embeds
speech_embed = self.ln_speech(speech_embed)
audio_embed = self.ln_audio(audio_embed)
audio_embed = F.pad(audio_embed, (0, 0, 0, speech_embed.size(1) - audio_embed.size(1)))
speech_embed = torch.cat([speech_embed, audio_embed], dim=-1)
# split frames
B, T, C = speech_embed.shape
kernel, stride = round(T * self.second_per_frame / 30.0), round(T * self.second_stride / 30.0)
kernel, stride = (1, kernel), (1, stride)
speech_embeds_tr = speech_embed.transpose(1, 2).unsqueeze(2)
speech_embeds_overlap = F.unfold(speech_embeds_tr, kernel_size=kernel, dilation=1, padding=0, stride=stride)
_, _, L = speech_embeds_overlap.shape
speech_embeds_overlap = speech_embeds_overlap.view(B, -1, kernel[1], L)
speech_embeds_overlap = torch.permute(speech_embeds_overlap, [0, 3, 2, 1])
speech_embed = speech_embeds_overlap.reshape(-1, kernel[1], C)
speech_atts = torch.ones(speech_embed.size()[:-1], dtype=torch.long, device=speech_embed.device)
# Qformer
query_tokens = self.speech_query_tokens.expand(speech_embed.shape[0], -1, -1)
query_output = self.speech_Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=speech_embed,
encoder_attention_mask=speech_atts,
return_dict=True,
use_cache=False
)
speech_embed = self.speech_llama_proj(query_output.last_hidden_state)
speech_embed = speech_embed.view(B, -1, speech_embed.size(2)).contiguous()
sources.append(
torch.concat([
torch.LongTensor([self.tokenizer.bos_token_id]).to(input_id[0].device),
input_id[0],
torch.LongTensor([self.tokenizer.bos_token_id] * speech_embed.shape[1]).to(input_id[0].device),
input_id[1],
torch.LongTensor([self.tokenizer.eos_token_id]).to(input_id[0].device),
])
)
targets.append(
torch.concat([
torch.LongTensor([IGNORE_INDEX]).to(label[0].device),
label[0],
torch.LongTensor([IGNORE_INDEX] * speech_embed.shape[1]).to(label[0].device),
label[1],
torch.LongTensor([self.tokenizer.eos_token_id]).to(label[0].device),
])
)
speech_embeds.append(speech_embed)
start_length = len(input_ids[0][0]) + 1
# USER: <Speech>speech_embeds<Speech> prompt\nASSISTANT:
PADDING_TOKEN = 0
embed_tokens = self.llama_model.model.model.embed_tokens if self.lora else self.llama_model.model.embed_tokens
input_ids = torch.nn.utils.rnn.pad_sequence(sources, batch_first=True, padding_value=PADDING_TOKEN)
labels = torch.nn.utils.rnn.pad_sequence(targets, batch_first=True, padding_value=PADDING_TOKEN)
attention_mask = input_ids.ne(PADDING_TOKEN)
inputs_embeds = []
for input_id, speech_embed in zip(input_ids, speech_embeds):
left_embeds = embed_tokens(input_id[:start_length])
right_embeds = embed_tokens(input_id[start_length + speech_embed.shape[1]:])
concat_tensor = torch.concat([left_embeds, speech_embed[0], right_embeds], dim=0).contiguous()
inputs_embeds.append(concat_tensor)
inputs_embeds = torch.stack(inputs_embeds)
return self.llama_model.forward(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=False,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
def generate(
self,
wav_path, prompt, prompt_pattern="USER: <Speech><SpeechHere></Speech> {}\nASSISTANT:", device='cuda:0',
max_length=2048, num_beams=4, do_sample=True, min_length=1, top_p=0.9, top_k=50,
repetition_penalty=1.0, length_penalty=1.0, temperature=1.0, bdr=(0, 240), num_return_sequences=1
):
# read wav
wav, sr = sf.read(wav_path)
if len(wav.shape) == 2:
wav = wav[:, 0]
wav = wav[int(bdr[0] * sr): int(bdr[1] * sr)]
if sr != 16000:
wav = librosa.resample(wav, orig_sr=sr, target_sr=16000, res_type="fft")
# whisper
spectrogram = self.feature_extractor(wav, return_tensors="pt", sampling_rate=16000).input_features.to(
device) # [1, 80, 3000]
speech_embeds = self.speech_encoder(spectrogram, return_dict=True).last_hidden_state
# beats
raw_wav = torch.from_numpy(wav).to(device).unsqueeze(0)
audio_padding_mask = torch.zeros(raw_wav.shape, device=device).bool()
audio_embeds, _ = self.beats.extract_features(raw_wav, padding_mask=audio_padding_mask, feature_only=True)
# auditory embeds
speech_embeds = self.ln_speech(speech_embeds)
audio_embeds = self.ln_audio(audio_embeds)
audio_embeds = F.pad(audio_embeds, (0, 0, 0, speech_embeds.size(1) - audio_embeds.size(1)))
speech_embeds = torch.cat([speech_embeds, audio_embeds], dim=-1)
# split frames
B, T, C = speech_embeds.shape
kernel, stride = round(T * self.second_per_frame / 30.0), round(T * self.second_stride / 30.0)
kernel, stride = (1, kernel), (1, stride)
speech_embeds_tr = speech_embeds.transpose(1, 2).unsqueeze(2)
speech_embeds_overlap = F.unfold(speech_embeds_tr, kernel_size=kernel, dilation=1, padding=0, stride=stride)
_, _, L = speech_embeds_overlap.shape
speech_embeds_overlap = speech_embeds_overlap.view(B, -1, kernel[1], L)
speech_embeds_overlap = torch.permute(speech_embeds_overlap, [0, 3, 2, 1])
speech_embeds = speech_embeds_overlap.reshape(-1, kernel[1], C)
speech_atts = torch.ones(speech_embeds.size()[:-1], dtype=torch.long, device=speech_embeds.device)
# Qformer
query_tokens = self.speech_query_tokens.expand(speech_embeds.shape[0], -1, -1)
query_output = self.speech_Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=speech_embeds,
encoder_attention_mask=speech_atts,
return_dict=True,
)
speech_embeds = self.speech_llama_proj(query_output.last_hidden_state)
speech_embeds = speech_embeds.view(B, -1, speech_embeds.size(2)).contiguous()
# USER: <Speech>speech_embeds<Speech> prompt\nASSISTANT:
embed_tokens = self.llama_model.model.model.embed_tokens if self.lora else self.llama_model.model.embed_tokens
prompt_left, prompts_right = prompt_pattern.format(prompt).split('<SpeechHere>')
prompt_left_ids = self.tokenizer(prompt_left, return_tensors="pt", add_special_tokens=False).to(
speech_embeds.device).input_ids
prompt_left_embeds = embed_tokens(prompt_left_ids)
prompt_right_ids = self.tokenizer(prompts_right, return_tensors="pt", add_special_tokens=False).to(
speech_embeds.device).input_ids
prompt_right_embeds = embed_tokens(prompt_right_ids)
bos_embeds = self.llama_model.model.embed_tokens(
torch.ones([1, 1], dtype=torch.long, device=device) * self.tokenizer.bos_token_id
) if not self.lora else self.llama_model.model.model.embed_tokens(
torch.ones([1, 1], dtype=torch.long, device=device) * self.tokenizer.bos_token_id
)
embeds = torch.cat([bos_embeds, prompt_left_embeds, speech_embeds, prompt_right_embeds], dim=1)
atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device)
# generate
output = self.llama_model.generate(
inputs_embeds=embeds,
max_length=max_length,
num_beams=num_beams,
do_sample=do_sample,
min_length=min_length,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
temperature=temperature,
num_return_sequences=num_return_sequences,
attention_mask=atts,
bos_token_id=self.tokenizer.bos_token_id,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
# use_cache=False
)
output_text = self.tokenizer.batch_decode(output, add_special_tokens=False, skip_special_tokens=True)
# output_text = self.tokenizer.batch_decode(output)
return output_text
def init_speech_Qformer(self, num_query_token, speech_width, num_hidden_layers=2):
encoder_config = BertConfig()
encoder_config.num_hidden_layers = num_hidden_layers
encoder_config.encoder_width = speech_width
encoder_config.add_cross_attention = True
encoder_config.cross_attention_freq = 1
encoder_config.query_length = num_query_token
Qformer = BertLMHeadModel(config=encoder_config)
query_tokens = nn.Parameter(
torch.zeros(1, num_query_token, encoder_config.hidden_size)
)
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
return Qformer, query_tokens