SentenceTransformer
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(transformer): Transformer(
(auto_model): XLMRobertaLoRA(
(roberta): XLMRobertaModel(
(embeddings): XLMRobertaEmbeddings(
(word_embeddings): ParametrizedEmbedding(
250002, 1024, padding_idx=1
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(token_type_embeddings): ParametrizedEmbedding(
1, 1024
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(emb_drop): Dropout(p=0.1, inplace=False)
(emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(encoder): XLMRobertaEncoder(
(layers): ModuleList(
(0-23): 24 x Block(
(mixer): MHA(
(rotary_emb): RotaryEmbedding()
(Wqkv): ParametrizedLinearResidual(
in_features=1024, out_features=3072, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(inner_attn): FlashSelfAttention(
(drop): Dropout(p=0.1, inplace=False)
)
(inner_cross_attn): FlashCrossAttention(
(drop): Dropout(p=0.1, inplace=False)
)
(out_proj): ParametrizedLinear(
in_features=1024, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(dropout1): Dropout(p=0.1, inplace=False)
(drop_path1): StochasticDepth(p=0.0, mode=row)
(norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): ParametrizedLinear(
in_features=1024, out_features=4096, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(fc2): ParametrizedLinear(
in_features=4096, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(dropout2): Dropout(p=0.1, inplace=False)
(drop_path2): StochasticDepth(p=0.0, mode=row)
(norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
)
)
)
(pooler): XLMRobertaPooler(
(dense): ParametrizedLinear(
in_features=1024, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(activation): Tanh()
)
)
)
)
(pooler): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(normalizer): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("Jrinky/jina3")
# Run inference
sentences = [
'What challenges does Mayor Hundred face in leading New York as depicted in March to War',
'His heroics convinced the citizens of New York to elect him mayor, and March to War opens with Mayor Hundred dealing with unrest in the city. Political cartoons display him as a caped superhero unable to handle the daily needs of the city, and a protest against the war in Iraq has it divided.',
"Bring your sewing machine - scissors - material - pattern (if you already have one that you want to work on) - have a project that you need assistance with - just want to spend the day with your fellow Caerthen's in a day of sewing and socializing? Come on out!",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 584,355 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 6 tokens
- mean: 17.41 tokens
- max: 42 tokens
- min: 5 tokens
- mean: 119.19 tokens
- max: 1979 tokens
- Samples:
anchor positive What resources and tools are recommended for busy brides planning their weddings
If you are planning on spending a little bit of time on your wedding planning, here is part 2 of my series of great resources and tools for wedding planning that every busy bride should know about. The previous instalment can be viewed here.
How many girls were raised in the house described
This house is where my parents proudly hung up our diplomas. This house is where 3 girls were raised.
Where did the narrator's dad always barbecue for Easter
This house is where my dad always barbequed for Easter, rain or shine. This house is where we welcomed family and friends on their first visit to the United States.
- Loss:
cachedselfloss2.CachedInfonce
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 18,073 evaluation samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 6 tokens
- mean: 17.52 tokens
- max: 40 tokens
- min: 5 tokens
- mean: 107.58 tokens
- max: 1832 tokens
- Samples:
anchor positive What significant role did the character Raven portray in early cinema
He played cynical tough guys in modern films, but then branched into westerns where for the most part he was the gallant hero. In fact the ultimate gallant white knight hero in Shane. His part as Raven is a difficult one, yet he pulls it off. He's a cold blooded contract killer, one of the earliest ever portrayed as a film protagonist. Yet he's human and you see flashes of it, his concern for cats. As a cat lover, I can sure identify with that. Raven is also one of the earliest characters in cinema who talks about child abuse making him what he is. Groundbreaking when you think about it. Next to Ladd, the biggest kudos have to go to Laird Cregar, borrowed from 20th Century Fox to play Willard Gates. Gates is a top company executive with Marshall's firm which is a defense contractor which is why the Senate is interested in him. He's basically a jerk who thinks he's so clever. Veronica Lake gets to him real easy because of his weakness for the nightclub scene.
What are the key features and characteristics of the Majestic Pure Dead Sea Mud Mask
At the same time, it can be used all over your body, not just face. This way, you can clear any part of your skin from its impurities. An additional feature that caught our eyes immediately was the beautifully designed packaging that makes this affordable product look high-end. The combination of grey, black, and blue colors will easily make it stand out in any beauty shop. - Good for sensitive and dry skin
- Affordable price
- Treats many different skin conditions
- Not good for oily skin
- Can feel a bit oily
Majestic Pure Dead Sea Mud Mask Review
Majestic Pure is a well-known brand among the beauty and skincare community. They make affordable, natural products and are oftentimes among the celebrity favorites.What benefits does this product provide for the skin
This will provide you with softer skin that glows. At the same time, it will help you deal with your clogged pores and provide you the necessary daily acne treatment.
- Loss:
cachedselfloss2.CachedInfonce
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 800per_device_eval_batch_size
: 800learning_rate
: 2e-05num_train_epochs
: 10warmup_ratio
: 0.1bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 800per_device_eval_batch_size
: 800per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.2052 | 150 | 13.7695 | 17.4625 |
0.4104 | 300 | 14.2067 | 17.4452 |
0.6156 | 450 | 14.344 | 17.4289 |
0.8208 | 600 | 13.705 | 17.3620 |
1.0260 | 750 | 13.0304 | 17.1246 |
1.2312 | 900 | 13.28 | 16.7495 |
1.4364 | 1050 | 13.0314 | 16.5068 |
1.6416 | 1200 | 13.0861 | 16.3113 |
1.8468 | 1350 | 13.2752 | 16.1406 |
2.0520 | 1500 | 12.2868 | 16.0122 |
2.2572 | 1650 | 12.9551 | 15.9320 |
2.4624 | 1800 | 12.8339 | 15.8444 |
2.6676 | 1950 | 12.0719 | 15.8108 |
2.8728 | 2100 | 12.7803 | 15.7694 |
3.0780 | 2250 | 11.9023 | 15.7460 |
3.2832 | 2400 | 12.6882 | 15.7291 |
3.4884 | 2550 | 12.3062 | 15.7165 |
3.6936 | 2700 | 12.402 | 15.7071 |
3.8988 | 2850 | 12.0136 | 15.7014 |
4.1040 | 3000 | 12.821 | 15.6873 |
4.3092 | 3150 | 12.4667 | 15.6835 |
4.5144 | 3300 | 12.6469 | 15.6740 |
4.7196 | 3450 | 12.1751 | 15.6519 |
4.9248 | 3600 | 12.3627 | 15.6637 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.3.1+cu121
- Accelerate: 1.5.2
- Datasets: 3.4.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CachedInfonce
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support