|
--- |
|
license: apache-2.0 |
|
base_model: t5-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- setimes |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: t5-base-finetuned-en-to-tr |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: setimes |
|
type: setimes |
|
config: en-tr |
|
split: train |
|
args: en-tr |
|
metrics: |
|
- name: Bleu |
|
type: bleu |
|
value: 13.0464 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-base-finetuned-en-to-tr |
|
|
|
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the setimes dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 4.7522 |
|
- Bleu: 13.0464 |
|
- Gen Len: 17.5633 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:| |
|
| 7.6012 | 1.0 | 12851 | 7.4685 | 2.2376 | 18.1521 | |
|
| 7.0962 | 2.0 | 25702 | 6.8819 | 4.4861 | 18.0448 | |
|
| 6.6712 | 3.0 | 38553 | 6.4648 | 6.1268 | 18.014 | |
|
| 6.3473 | 4.0 | 51404 | 6.1421 | 7.6084 | 17.9027 | |
|
| 6.1161 | 5.0 | 64255 | 5.8969 | 8.4021 | 17.7949 | |
|
| 5.9178 | 6.0 | 77106 | 5.6935 | 9.37 | 17.8392 | |
|
| 5.7331 | 7.0 | 89957 | 5.5226 | 9.8004 | 17.8893 | |
|
| 5.5981 | 8.0 | 102808 | 5.3886 | 10.3562 | 17.8955 | |
|
| 5.4867 | 9.0 | 115659 | 5.2807 | 10.876 | 17.7434 | |
|
| 5.3722 | 10.0 | 128510 | 5.1751 | 11.1864 | 17.7313 | |
|
| 5.2739 | 11.0 | 141361 | 5.0924 | 11.6223 | 17.6476 | |
|
| 5.2339 | 12.0 | 154212 | 5.0033 | 11.8264 | 17.6996 | |
|
| 5.1754 | 13.0 | 167063 | 4.9500 | 12.1915 | 17.6447 | |
|
| 5.0981 | 14.0 | 179914 | 4.8958 | 12.4578 | 17.5782 | |
|
| 5.0478 | 15.0 | 192765 | 4.8458 | 12.6398 | 17.5753 | |
|
| 4.9778 | 16.0 | 205616 | 4.8142 | 12.6034 | 17.5681 | |
|
| 4.9689 | 17.0 | 218467 | 4.7840 | 12.807 | 17.5816 | |
|
| 4.9368 | 18.0 | 231318 | 4.7680 | 13.038 | 17.5614 | |
|
| 4.9829 | 19.0 | 244169 | 4.7572 | 13.0403 | 17.5407 | |
|
| 4.9434 | 20.0 | 257020 | 4.7522 | 13.0464 | 17.5633 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.1 |
|
- Pytorch 2.2.1+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|