chatgpt-gpt4-prompts-bart-large-cnn-samsum

This model generates ChatGPT/BingChat & GPT-3 prompts and is a fine-tuned version of philschmid/bart-large-cnn-samsum on an this dataset. It achieves the following results on the evaluation set:

  • Train Loss: 1.2214
  • Validation Loss: 2.7584
  • Epoch: 4

Streamlit

This model supports a Streamlit Web UI to run the chatgpt-gpt4-prompts-bart-large-cnn-samsum model: Open In HF Spaces

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Epoch
3.1982 2.6801 0
2.3601 2.5493 1
1.9225 2.5377 2
1.5465 2.6794 3
1.2214 2.7584 4

Framework versions

  • Transformers 4.27.3
  • TensorFlow 2.11.0
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
42
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Kaludi/chatgpt-gpt4-prompts-bart-large-cnn-samsum

Spaces using Kaludi/chatgpt-gpt4-prompts-bart-large-cnn-samsum 20