Moroccan Darija TTS
This is a text-to-speech (TTS) model for Moroccan Darija, fine-tuned from OuteAI/OuteTTS-0.2-500M on the KandirResearch/DarijaTTS-clean dataset.
Model Details
- Base Model: OuteAI/OuteTTS-0.2-500M
- Dataset: KandirResearch/DarijaTTS-clean
- Training Method: Fine-tuned using Unsloth's
SFTTrainer
- Dataset Preparation: Preprocessed following OuteTTS training guide
- Demo: Try it here
Usage
You can run the model using outetts
as follows:
install outetts
and llama-cpp-python
pip install outetts llama-cpp-python huggingface_hub
import outetts
from outetts.models.config import GenerationConfig
from huggingface_hub import hf_hub_download
model_path = hf_hub_download(
repo_id="KandirResearch/DarijaTTS-v0.1-500M",
filename="unsloth.Q8_0.gguf",
)
model_config = outetts.GGUFModelConfig_v2(
model_path=model_path,
tokenizer_path="KandirResearch/DarijaTTS-v0.1-500M",
)
interface = outetts.InterfaceGGUF(model_version="0.3", cfg=model_config)
def tts(text, temperature=0.3, repetition_penalty=1.1):
gen_cfg = GenerationConfig(
text=text,
temperature=temperature,
repetition_penalty=repetition_penalty,
max_length=4096,
)
output = interface.generate(config=gen_cfg)
output_path = "output.wav"
output.save(output_path)
return output_path
# Example usage
audio_path = tts("السلام كيداير لاباس عليك؟")
print(f"Generated audio saved at: {audio_path}")
Training
The model was fine-tuned using Unsloth
's SFTTrainer
. The dataset was preprocessed following the OuteTTS training guide. LoRA-based fine-tuning was applied to improve efficiency.
Support Me
For any issues or improvements, feel free to open a discussion or PR!
- Downloads last month
- 70
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support