Kao1412's picture
Add new SentenceTransformer model
bafb1de verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:6500
  - loss:CosineSimilarityLoss
base_model: keepitreal/vietnamese-sbert
widget:
  - source_sentence: 64 đường tố hữu đông anh hải phòng
    sentences:
      - 64 đường tố hữu đông anh hải phòng
      - 80 mễ trì phú nhuận tp  mau
      - 81 phùng  khồang  phường  quận  6 đà  nẵng
  - source_sentence: cầu. giấy. chương. mỹ. tphường. hà. tĩnh
    sentences:
      - lê. đức. thọ. hóc. môngõ sóc. trăng
      - phạm hùng phường thanh trì thành phố quy nhơn
      - 74 đường, nguyễn, văn, cừ, phường, thường, tín, đồng, tháp
  - source_sentence: phạm. văngõ bạchuyện đông. anhuyện sóc. trăng
    sentences:
      - số. 95 mễ. trì. phường. hai. bà. trưng. hồ. chí. minh
      - 148 đường trần thái tông bình chánh bình dương
      - số 119 tố hữu tân phú nam định
  - source_sentence: trần thai tong thu đuc soc trầng
    sentences:
      - đức thọ đông anh hải phòng
      - phạm hung quận đan phuong ninh binh
      - trầnthái tông thủ đức sóc trăng
  - source_sentence: xuan, thuy, thanh, tri, đong, thap
    sentences:
      - xuân, thủy, thanh, trì, đồng, tháp
      - so  143 me  tri  quan  10 lam  đong
      - trần  thai  tong  thach  that  thanh  phồ  kon  tum
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - cosine_mcc
model-index:
  - name: SentenceTransformer based on keepitreal/vietnamese-sbert
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: address eval
          type: address-eval
        metrics:
          - type: cosine_accuracy
            value: 0.91
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.6586315035820007
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.9014925373134328
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.6586315035820007
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.897029702970297
            name: Cosine Precision
          - type: cosine_recall
            value: 0.906
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9161149688703704
            name: Cosine Ap
          - type: cosine_mcc
            value: 0.8186854636882175
            name: Cosine Mcc

SentenceTransformer based on keepitreal/vietnamese-sbert

This is a sentence-transformers model finetuned from keepitreal/vietnamese-sbert. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: keepitreal/vietnamese-sbert
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Kao1412/Classification_Address")
# Run inference
sentences = [
    'xuan, thuy, thanh, tri, đong, thap',
    'xuân, thủy, thanh, trì, đồng, tháp',
    'trần  thai  tong  thach  that  thanh  phồ  kon  tum',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.91
cosine_accuracy_threshold 0.6586
cosine_f1 0.9015
cosine_f1_threshold 0.6586
cosine_precision 0.897
cosine_recall 0.906
cosine_ap 0.9161
cosine_mcc 0.8187

Training Details

Training Dataset

Unnamed Dataset

  • Size: 6,500 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 4 tokens
    • mean: 14.83 tokens
    • max: 34 tokens
    • min: 4 tokens
    • mean: 14.54 tokens
    • max: 34 tokens
    • min: 0.0
    • mean: 0.47
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    42 lê van lương ba đình an giang 42 lê văn lương ba đình an giang 1.0
    so 51 đuong nguyễn chi thanh đong anh đa nang phạm van bach phu xuyen soc trầng 0.0
    phồ, le, van, luong, phu, nhuan, long, an phồ, le, văn, lương, phu, nhuan, long, an 1.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • num_train_epochs: 5
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss address-eval_cosine_ap
1.0 204 - 0.8984
2.0 408 - 0.9073
2.4510 500 0.0884 0.9108
3.0 612 - 0.9118
4.0 816 - 0.9147
4.9020 1000 0.0627 0.9161

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.7.0
  • Datasets: 2.14.4
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}