metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6500
- loss:CosineSimilarityLoss
base_model: keepitreal/vietnamese-sbert
widget:
- source_sentence: 64 đường tố hữu đông anh hải phòng
sentences:
- 64 đường tố hữu đông anh hải phòng
- 80 mễ trì phú nhuận tp cà mau
- 81 phùng khồang phường quận 6 đà nẵng
- source_sentence: cầu. giấy. chương. mỹ. tphường. hà. tĩnh
sentences:
- lê. đức. thọ. hóc. môngõ sóc. trăng
- phạm hùng phường thanh trì thành phố quy nhơn
- 74 đường, nguyễn, văn, cừ, phường, thường, tín, đồng, tháp
- source_sentence: phạm. văngõ bạchuyện đông. anhuyện sóc. trăng
sentences:
- số. 95 mễ. trì. phường. hai. bà. trưng. hồ. chí. minh
- 148 đường trần thái tông bình chánh bình dương
- số 119 tố hữu tân phú nam định
- source_sentence: trần thai tong thu đuc soc trầng
sentences:
- đức thọ đông anh hải phòng
- phạm hung quận đan phuong ninh binh
- trầnthái tông thủ đức sóc trăng
- source_sentence: xuan, thuy, thanh, tri, đong, thap
sentences:
- xuân, thủy, thanh, trì, đồng, tháp
- so 143 me tri quan 10 lam đong
- trần thai tong thach that thanh phồ kon tum
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: SentenceTransformer based on keepitreal/vietnamese-sbert
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: address eval
type: address-eval
metrics:
- type: cosine_accuracy
value: 0.91
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.6586315035820007
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9014925373134328
name: Cosine F1
- type: cosine_f1_threshold
value: 0.6586315035820007
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.897029702970297
name: Cosine Precision
- type: cosine_recall
value: 0.906
name: Cosine Recall
- type: cosine_ap
value: 0.9161149688703704
name: Cosine Ap
- type: cosine_mcc
value: 0.8186854636882175
name: Cosine Mcc
SentenceTransformer based on keepitreal/vietnamese-sbert
This is a sentence-transformers model finetuned from keepitreal/vietnamese-sbert. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: keepitreal/vietnamese-sbert
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Kao1412/Classification_Address")
# Run inference
sentences = [
'xuan, thuy, thanh, tri, đong, thap',
'xuân, thủy, thanh, trì, đồng, tháp',
'trần thai tong thach that thanh phồ kon tum',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
address-eval
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.91 |
cosine_accuracy_threshold | 0.6586 |
cosine_f1 | 0.9015 |
cosine_f1_threshold | 0.6586 |
cosine_precision | 0.897 |
cosine_recall | 0.906 |
cosine_ap | 0.9161 |
cosine_mcc | 0.8187 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,500 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 4 tokens
- mean: 14.83 tokens
- max: 34 tokens
- min: 4 tokens
- mean: 14.54 tokens
- max: 34 tokens
- min: 0.0
- mean: 0.47
- max: 1.0
- Samples:
sentence_0 sentence_1 label 42 lê van lương ba đình an giang
42 lê văn lương ba đình an giang
1.0
so 51 đuong nguyễn chi thanh đong anh đa nang
phạm van bach phu xuyen soc trầng
0.0
phồ, le, van, luong, phu, nhuan, long, an
phồ, le, văn, lương, phu, nhuan, long, an
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 5multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | address-eval_cosine_ap |
---|---|---|---|
1.0 | 204 | - | 0.8984 |
2.0 | 408 | - | 0.9073 |
2.4510 | 500 | 0.0884 | 0.9108 |
3.0 | 612 | - | 0.9118 |
4.0 | 816 | - | 0.9147 |
4.9020 | 1000 | 0.0627 | 0.9161 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.52.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 2.14.4
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}