Deepseek-R1-Distill-Qwen-14B-peft-p-tuning-5
This model is a fine-tuned version of deepseek-ai/DeepSeek-R1-Distill-Qwen-14B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1054
- Accuracy: 0.9682
- Precision: 0.8819
- Recall: 0.9157
- F1: 0.8985
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.2794 | 1.0 | 1477 | 0.1349 | 0.9575 | 0.8706 | 0.8506 | 0.8605 |
0.1178 | 2.0 | 2954 | 0.1353 | 0.9505 | 0.9116 | 0.7510 | 0.8235 |
0.1084 | 3.0 | 4431 | 0.1036 | 0.9682 | 0.8906 | 0.9042 | 0.8973 |
0.0757 | 4.0 | 5908 | 0.1080 | 0.9652 | 0.8915 | 0.8812 | 0.8863 |
0.0589 | 5.0 | 7385 | 0.1054 | 0.9682 | 0.8819 | 0.9157 | 0.8985 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1
- Downloads last month
- 44
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Kenazin/Deepseek-R1-Distill-Qwen-14B-peft-p-tuning-5
Base model
deepseek-ai/DeepSeek-R1-Distill-Qwen-14B