Key1111/qwen2.5-7b-vietnamese-enhanced
Merged Qwen2.5-7B-Instruct model fine-tuned for Vietnamese language tasks using LoRA (Low-Rank Adaptation).
Model Details
- Base Model: Qwen/Qwen2.5-7B-Instruct
- Fine-tuning Method: LoRA (merged with base model)
- Language: Vietnamese, English
- Training Data: Alpaca + ViQuAD datasets
- Model Size: ~7B parameters
- Context Length: 2048 tokens
Usage
Direct Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the merged model directly
model = AutoModelForCausalLM.from_pretrained("Key1111/qwen2.5-7b-vietnamese-enhanced", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("Key1111/qwen2.5-7b-vietnamese-enhanced", trust_remote_code=True)
# Generate text
prompt = "Xin chào! Bạn có thể giúp tôi không?"
messages = [{"role": "user", "content": prompt}]
# Apply chat template
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
outputs = model.generate(
**inputs,
max_new_tokens=256,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
Using PEFT (if you have LoRA adapter)
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2.5-7B-Instruct",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
"Qwen/Qwen2.5-7B-Instruct",
trust_remote_code=True
)
# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, "Key1111/qwen2.5-7b-vietnamese-enhanced")
# Use the model
messages = [{"role": "user", "content": "Xin chào, bạn có thể giúp tôi không?"}]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=512)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
In n8n
Use this model directly in Hugging Face Inference nodes:
- Model:
Key1111/qwen2.5-7b-vietnamese-enhanced
- No additional configuration needed
Training Details
- Base Model: Qwen/Qwen2.5-7B-Instruct
- Fine-tuning Method: LoRA (Low-Rank Adaptation)
- LoRA Rank: 32
- LoRA Alpha: 16
- Learning Rate: 2e-4
- Batch Size: 2
- Gradient Accumulation Steps: 8
- Max Sequence Length: 2048
- Training Data:
- Alpaca format dataset (Vietnamese instructions)
- ViQuAD dataset (Vietnamese question-answering)
- Total Training Samples: 5000
- Training Epochs: 2
- Optimizer: AdamW
- Scheduler: Linear warmup
Model Performance
This model has been fine-tuned specifically for Vietnamese language tasks and should perform well on:
- Vietnamese instruction following
- Vietnamese question answering
- Vietnamese text generation
- Bilingual (Vietnamese-English) conversations
Limitations
- The model may still have limitations in understanding complex Vietnamese contexts
- Performance may vary depending on the specific task and domain
- The model inherits limitations from the base Qwen2.5-7B-Instruct model
License
This model is licensed under Apache 2.0.
Citation
If you use this model in your research, please cite:
@misc{Key1111_qwen2.5_7b_vietnamese_enhanced,
title={Key1111/qwen2.5-7b-vietnamese-enhanced},
author={Key1111},
year={2024},
publisher={Hugging Face},
journal={Hugging Face Hub},
howpublished={\url{https://huggingface.co/Key1111/qwen2.5-7b-vietnamese-enhanced}},
}
- Downloads last month
- 34
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support