YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
To load and initialize the Generator
model from the repository, follow these steps:
Install Required Packages: Ensure you have the necessary Python packages installed:
pip install torch omegaconf huggingface_hub
Download Model Files: Retrieve the
generator.pth
,config.json
, andmodel.py
files from the Hugging Face repository. You can use thehuggingface_hub
library for this:from huggingface_hub import hf_hub_download repo_id = "Kiwinicki/sat2map-generator" generator_path = hf_hub_download(repo_id=repo_id, filename="generator.pth") config_path = hf_hub_download(repo_id=repo_id, filename="config.json") model_path = hf_hub_download(repo_id=repo_id, filename="model.py")
Load the Model: Incorporate the downloaded
model.py
to define theGenerator
class, then load the model's state dictionary and configuration:import torch import json from omegaconf import OmegaConf import sys from pathlib import Path from model import Generator # Load configuration with open(config_path, "r") as f: config_dict = json.load(f) cfg = OmegaConf.create(config_dict) # Initialize and load the generator model generator = Generator(cfg) generator.load_state_dict(torch.load(generator_path)) generator.eval() x = torch.randn([1, cfg['channels'], 256, 256]) out = generator(x)
Here,
generator
is the initialized model ready for inference.
- Downloads last month
- 37
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model's library.