Add a custom handler for Inference Endpoints
Browse filesI've added a custom `EndpointHandler` implementation used by Inference Endpoints. I've also added the needed `requirements.txt` - without it, necessary packages won't be installed automatically. I've also did not add any transforms (apart from the `ToTensor()`) which you said are needed .
- .gitignore +2 -0
- handler.py +54 -0
- requirements.txt +0 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
.venv
|
2 |
+
.idea
|
handler.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torchvision import transforms
|
3 |
+
from huggingface_hub import hf_hub_download
|
4 |
+
import json
|
5 |
+
import io
|
6 |
+
import base64
|
7 |
+
from PIL import Image
|
8 |
+
from omegaconf import OmegaConf
|
9 |
+
|
10 |
+
from model import Generator
|
11 |
+
|
12 |
+
|
13 |
+
class EndpointHandler:
|
14 |
+
|
15 |
+
def __init__(self, path=''):
|
16 |
+
self.transform = transforms.Compose([
|
17 |
+
transforms.ToTensor()
|
18 |
+
])
|
19 |
+
|
20 |
+
repo_id = "Kiwinicki/sat2map-generator"
|
21 |
+
generator_path = hf_hub_download(repo_id=repo_id, filename="generator.pth")
|
22 |
+
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
|
23 |
+
model_path = hf_hub_download(repo_id=repo_id, filename="model.py")
|
24 |
+
|
25 |
+
with open(config_path, "r") as f:
|
26 |
+
config_dict = json.load(f)
|
27 |
+
cfg = OmegaConf.create(config_dict)
|
28 |
+
|
29 |
+
self.generator = Generator(cfg)
|
30 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
31 |
+
self.generator.load_state_dict(torch.load(generator_path, map_location=self.device))
|
32 |
+
self.generator.eval()
|
33 |
+
|
34 |
+
|
35 |
+
def __call__(self, data: dict[str, any]) -> dict[str, str]:
|
36 |
+
base64_image = data.get('inputs')
|
37 |
+
input_tensor = self._decode_base64_image(base64_image)
|
38 |
+
# print('Input tensor shape: ' + str(input_tensor.shape))
|
39 |
+
output_tensor = self.generator(input_tensor.to(self.device))
|
40 |
+
output_tensor = output_tensor.squeeze(0)
|
41 |
+
output_image = transforms.ToPILImage()(output_tensor)
|
42 |
+
output_image = output_image.convert('RGB')
|
43 |
+
output_buffer = io.BytesIO()
|
44 |
+
output_image.save(output_buffer, format="png")
|
45 |
+
base64_output = base64.b64encode(output_buffer.getvalue()).decode('utf-8')
|
46 |
+
return {"output": base64_output}
|
47 |
+
|
48 |
+
|
49 |
+
def _decode_base64_image(self, base64_image: str) -> torch.Tensor:
|
50 |
+
image_decoded = base64.b64decode(base64_image)
|
51 |
+
image = Image.open(io.BytesIO(image_decoded)).convert('RGB')
|
52 |
+
image_tensor: torch.Tensor = self.transform(image)
|
53 |
+
image_tensor = image_tensor.unsqueeze(0)
|
54 |
+
return image_tensor
|
requirements.txt
ADDED
Binary file (924 Bytes). View file
|
|