🌾 KlonSuphap-LM (แต่งกลอนแปด ด้วย GPT-2)
Visit Demo Space -> Kongfha/KlonSuphap-Generator
Visit GitHub Repository -> Kongfha/KlonSuphap-LM
Visit Blog (Thai Language) -> 🌾 KlonSuphap-LM แต่งกลอนแปด ด้วย GPT-2
KlonSuphap-LM or GPT-2 for Thai poems (Klon-Paed Poem). I use GPT-2 base Thai as a pre-trained model for fine-tuning exclusively on Thai Klon-Paed Poem (กลอนแปด) retrieved from Thai Literature Corpora (TLC) dataset.
Prior to my recent poem-generation model, PhraAphaiManee-LM, although the model can perform a depiction of Thai Klon-Paed Poems, it still does not adhere to the rules of Thai Klon-Paed (ฉันทลักษณ์) in its generated output. To overcome this challenge I developed techniques that make the model to be more adhere to rules are as follows.
Fine-Tuning dataset preprocessing.
As I have a limited quantity of Thai Klon-Paed Poem or about 65770 lines (บาท), thus to succeed in the objective of making the model to be more adhere to rules, I developed a technique called "Rhyme Tagging".
"Rhyme Tagging" performs tag insertion before and after words that are expected to rhyme with the other words based on Klon-Paed Rules.
Exampleพอได้ยินเสียงระฆังข้างหลัง<s2>เขา</s2>
เห็นผู้<es2>เฒ่า</es2>ออกจากชะวาก<s2>ผา</s2>
สรรพางค์ร่างกายแก่ช<es2>รา</es2>
แต่ผิว<es2>หน้า</es2>นั้นละม้ายคล้ายทา<s3>รก</s3>With "Rhyme Tagging", the potential loss of rhyme information due to an overwhelming flood of non-rhyme-related data can be mitigated. This approach aids the self-attention mechanism in extracting a greater amount of rhyme-related information, ensuring its preservation and relevance throughout the processing.
Applying Attention-Mask while fine-tuning.
Apart from performing a common fine-tuning process using the preprocessed dataset, I did fine-tune the model by applying Attention-Mask to non-rhyme-related words to the dataset as following visualization.
Visualized Example------------------------------<s2>เขา</s2>
-----<es2>เฒ่า</es2>--------------------<s2>ผา</s2>
---------------------------<es2>รา</es2>
------<es2>หน้า</es2>-----------------------<s3>รก</s3>By applying Attention-Mask while fine-tuning, the model can prioritize the extraction of information from both the rhyme-tags and their surrounding words without dropping positional information. This enhances the model's performance in subsequent stages of fine-tuning as if the model were constructing lookup table for rhyme-related words.
Performing Reinforcement Learning
After the stage of Supervised Fine-Tuning, I perform Reinforcement Learning to the model using voidful/TextRL by defining Klon-Paed Grader as a PPO Environment.
I perform Reinforcement Learning by randomly pick initial 2-5 syllables from the validation set as text inputs in an observation list, then I force the model to generate only 1 line (บาท) which has only 1 rhyme pair.
TextRL will repeatedly feed text inputs from the observation list to the model and calculate the reward using my Klon-Paed Grader, then update the model's weights based on rewards it recieved.
Cherry-Picked Examples From Demo (Top-P 0.8 Temp 0.8)
ปัญญาประดิษฐ์องค์ทรงสุรดี
เห็นสุดมีบังคมก้มเกศา
ต่างยิ้มละลูกยับลงตรงบันลา
ถึงว่ารุ่งรางสว่างกลางนวัง
ขอขอบคุณบุญกุศลจิต
เป็นเพื่อนคิดจะเป็นคู่เคหา
ต่างคนกับเหล่านางสร้อยตา
ต้องมาก็จะมาไปว่าไร
ทรานส์ฟอร์เมอร์มีเซลฟ์แอตเทนชัน
ขึ้นบรรลักษณ์ก็เหลือบเขียนฉงน
ที่จับต้อนแต่เรือนเพื่อนเหมือนอย่างวน
จะต้องชวนมาช่วยให้เชยชม
Example use
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "Kongfha/KlonSuphap-LM"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
generate = pipeline("text-generation",
model=model,
tokenizer=tokenizer)
input_sentence = "มิตรแท้"
generated_text = generate(input_sentence,
max_length=160,
top_p=0.85,
temperature=1)
# generation parameters can be varied
print(f"Input: {input_sentence}")
print(f"Output:\n {generated_text[0]['generated_text']}")
- Downloads last month
- 143