See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2.5-3B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- df9fd0b66f63a4eb_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/df9fd0b66f63a4eb_train_data.json
type:
field_instruction: instruct
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
eval_batch_size: 8
eval_max_new_tokens: 128
eval_steps: 567
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: Kromtao/5fd8fecc-6180-4524-8458-1a43fce628c5
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
local_rank: null
logging_steps: 50
lora_alpha: 16
lora_dropout: 0.1
lora_fan_in_fan_out: false
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1134
micro_batch_size: 8
mlflow_experiment_name: /tmp/df9fd0b66f63a4eb_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
save_steps: 567
saves_per_epoch: null
seed: 9103
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: dc916161-c038-4d50-8932-641110bd4c02
wandb_project: kr03
wandb_run: your_name
wandb_runid: dc916161-c038-4d50-8932-641110bd4c02
warmup_steps: 100
weight_decay: 0.01
xformers_attention: true
5fd8fecc-6180-4524-8458-1a43fce628c5
This model is a fine-tuned version of Qwen/Qwen2.5-3B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7839
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 9103
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1134
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0004 | 1 | 2.3128 |
0.9311 | 0.2139 | 567 | 0.9030 |
0.7696 | 0.4277 | 1134 | 0.7839 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Kromtao/5fd8fecc-6180-4524-8458-1a43fce628c5
Base model
Qwen/Qwen2.5-3B