CS221-BantuBERTa-vmw-finetuned-vmw-noaug-finetuned-vmw-tapt
This model is a fine-tuned version of Kuongan/BantuBERTa-vmw-finetuned-vmw-noaug on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0719
- F1: 0.8634
- Roc Auc: 0.9074
- Accuracy: 0.9072
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.087 | 1.0 | 65 | 0.0719 | 0.8634 | 0.9074 | 0.9072 |
0.0734 | 2.0 | 130 | 0.0840 | 0.8123 | 0.8845 | 0.8665 |
0.0571 | 3.0 | 195 | 0.0785 | 0.8402 | 0.8915 | 0.8878 |
0.037 | 4.0 | 260 | 0.0834 | 0.8284 | 0.8877 | 0.8781 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 30
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Kuongan/CS221-BantuBERTa-vmw-finetuned-vmw-noaug-finetuned-vmw-tapt
Base model
dsfsi/BantuBERTa
Finetuned
Kuongan/BantuBERTa-vmw-finetuned