DSC_bert-base-multilingual-uncased_finetuned

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7807
  • Accuracy: 0.7421
  • F1 Macro: 0.7417

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro
No log 1.0 22 0.9784 0.5386 0.4735
No log 2.0 44 0.8138 0.665 0.6554
0.9159 3.0 66 0.7604 0.6886 0.6862
0.9159 4.0 88 0.7336 0.7157 0.7141
0.6825 5.0 110 0.7421 0.715 0.7102
0.6825 6.0 132 0.7100 0.7386 0.7392
0.5273 7.0 154 0.7326 0.7393 0.7385
0.5273 8.0 176 0.7543 0.7329 0.7320
0.5273 9.0 198 0.7807 0.7421 0.7417
0.3938 10.0 220 0.8103 0.7279 0.7286
0.3938 11.0 242 0.8120 0.7386 0.7386
0.317 12.0 264 0.8424 0.7386 0.7378
0.317 13.0 286 0.8441 0.7336 0.7341

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
26
Safetensors
Model size
167M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Kuongan/DSC_bert-base-multilingual-uncased_finetuned

Finetuned
(1853)
this model