DSC_bert-base-multilingual-uncased_finetuned
This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7807
- Accuracy: 0.7421
- F1 Macro: 0.7417
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro |
---|---|---|---|---|---|
No log | 1.0 | 22 | 0.9784 | 0.5386 | 0.4735 |
No log | 2.0 | 44 | 0.8138 | 0.665 | 0.6554 |
0.9159 | 3.0 | 66 | 0.7604 | 0.6886 | 0.6862 |
0.9159 | 4.0 | 88 | 0.7336 | 0.7157 | 0.7141 |
0.6825 | 5.0 | 110 | 0.7421 | 0.715 | 0.7102 |
0.6825 | 6.0 | 132 | 0.7100 | 0.7386 | 0.7392 |
0.5273 | 7.0 | 154 | 0.7326 | 0.7393 | 0.7385 |
0.5273 | 8.0 | 176 | 0.7543 | 0.7329 | 0.7320 |
0.5273 | 9.0 | 198 | 0.7807 | 0.7421 | 0.7417 |
0.3938 | 10.0 | 220 | 0.8103 | 0.7279 | 0.7286 |
0.3938 | 11.0 | 242 | 0.8120 | 0.7386 | 0.7386 |
0.317 | 12.0 | 264 | 0.8424 | 0.7386 | 0.7378 |
0.317 | 13.0 | 286 | 0.8441 | 0.7336 | 0.7341 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 26
Model tree for Kuongan/DSC_bert-base-multilingual-uncased_finetuned
Base model
google-bert/bert-base-multilingual-uncased