Safetensors
English
qwen3
File size: 5,715 Bytes
0641739
 
 
 
 
 
 
3afd206
 
0641739
 
 
 
 
 
 
 
 
 
 
 
3afd206
 
 
0641739
 
 
 
 
 
e3d06cc
0641739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
license: apache-2.0
language:
- en
base_model:
- Qwen/Qwen3-8B-Base
datasets:
- Kwai-Klear/KlearReasoner-MathSub-30K
- Kwai-Klear/KlearReasoner-CodeSub-15K
metrics:
- accuracy
---


# ✨ Klear-Reasoner-8B-SFT
We present Klear-Reasoner, a model with long reasoning capabilities that demonstrates careful deliberation during problem solving, achieving outstanding performance across multiple benchmarks. We investigate two key issues with current clipping mechanisms in RL: Clipping suppresses critical exploration signals and ignores suboptimal trajectories. To address these challenges, we propose **G**radient-**P**reserving clipping **P**olicy **O**ptimization (**GPPO**) that gently backpropagates gradients from clipped tokens.  

| Resource | Link |
|---|---|
| πŸ“ Preprints | [Paper](https://arxiv.org/pdf/2508.07629) |
| πŸ€— Daily Paper | [Paper](https://huggingface.co/papers/2508.07629) |
| πŸ€— Model Hub | [Klear-Reasoner-8B](https://huggingface.co/Kwai-Klear/Klear-Reasoner-8B) |
| πŸ€— Dataset Hub | [Math RL](https://huggingface.co/datasets/Kwai-Klear/KlearReasoner-MathSub-30K) |
| πŸ€— Dataset Hub | [Code RL](https://huggingface.co/datasets/Kwai-Klear/KlearReasoner-CodeSub-15K) |
| πŸ› Issues & Discussions | [GitHub Issues](https://github.com/suu990901/KlearReasoner/issues) |
| πŸ“§ Contact | [email protected] |

## πŸ“Œ Overview

<div align="center">
<img src="main_result.png" width="100%"/>

<sub>Benchmark accuracy of Klear-Reasoner-8B on AIME 2024/2025 (avg@64), LiveCodeBench V5 (2024/08/01-2025/02/01, avg@8), and v6 (2025/02/01-2025/05/01, avg@8).</sub>
</div>

Klear-Reasoner is an 8-billion-parameter reasoning model that achieves **SOTA** performance on challenging **math and coding benchmarks**:

| Benchmark | AIME 2024 | AIME 2025 | LiveCodeBench V5 | LiveCodeBench V6 |
|---|---|---|---|---|
| **Score** | **90.5 %** | **83.2 %** | **66.0 %** | **58.1 %** |

The model combines:
1. **Quality-centric long CoT SFT** – distilled from DeepSeek-R1-0528.
2. **Gradient-Preserving Clipping Policy Optimization (GPPO)** – a novel RL method that **keeps gradients from clipped tokens** to boost exploration & convergence.

---

### Evaluation
When we expand the inference budget to 64K and adopt the YaRN method with a scaling factor of 2.5. **Evaluation is coming soon, stay tuned.**  

## πŸ“Š Benchmark Results (Pass@1)

| Model | AIME2024<br>avg@64 | AIME2025<br>avg@64 | HMMT2025<br>avg@64 | LCB V5<br>avg@8 | LCB V6<br>avg@8 |
|-------|--------------------|--------------------|--------------------|-----------------|-----------------|
| AReal-boba-RL-7B | 61.9 | 48.3 | 29.4 | 34.3 | 31.0† |
| MiMo-7B-RL | 68.2 | 55.4 | 35.7 | 57.8 | 49.3 |
| Skywork-OR1-7B | 70.2 | 54.6 | 35.7 | 47.6 | 42.7 |
| AceReason-Nemotron-1.1-7B | 72.6 | 64.8 | 42.9 | 57.2 | 52.1 |
| POLARIS-4B-Preview  | 81.2 | _79.4_ | 58.7 | 58.5† | 53.0† |
| Qwen3-8B | 76.0 | 67.3 | 44.7† | 57.5 | 48.4† |
| Deepseek-R1-0528-Distill-8B  | _86.0_ | 76.3 | 61.5 | 61.0† | 51.6† |
| OpenReasoning-Nemotron-7B  | 84.7 | 78.2 | 63.5 | _65.6_† | _56.3_† |
| Klear-Reasoner-8B-SFT | 75.6 | 70.1 | 57.6 | 58.5 | 49.6 |
| Klear-Reasoner-8B | 83.2 | 75.6 | 60.3 | 61.6 | 53.1 |
| *w/ 64K Inference Budget*  | **90.5** | **83.2** | **70.8** | **66.0** | **58.1** |

> We report the average `pass@1` results (avg@_n_), with all other evaluation metrics following the DeepSeek-R1 assessment framework (temperature=0.6, top_p=0.95).  


---

## πŸ§ͺ Training
### Configure the experimental environment
```bash
git clone https://github.com/suu990901/Klear_Reasoner
cd Klear_Reasoner
pip install -r requirements.txt
```
For the code, we use [Firejail](https://github.com/netblue30/firejail) for the **sandbox** environment. Additionally, we implemented multi-process control based on [Pebble](https://github.com/noxdafox/pebble), enabling automatic resource reclamation upon task timeout. For mathematics, we use [math_verify](https://github.com/huggingface/Math-Verify) for judging.

### Using Ray for Multi-Node Training
For multi-node training​​, ensure ​​all nodes are started and connected via Ray​​ before executing the training script. Below is a brief setup guide for Ray across multiple machines:
#### Step 1: Start Ray on the Head Node (node0)

On the first node (typically called `node0`), run:

```bash
ray start --head --dashboard-host=0.0.0.0
```

Get the IP address of the master node.
```bash
MASTER_IP=$(hostname -I | awk '{print $1}')
```
#### Step 2: Connect Other Nodes (e.g., node1)

On each additional worker node (e.g., `node1`), run the following, replacing the IP with that of your head node:

```bash
ray start --address=\"$MASTER_IP:6379\"
```

### RL Training
Run the following script on the master node to start the training task.

```bash
bash recipe/dapo/perf_run_dapo_ours_math.sh # For Math RL
bash recipe/dapo/perf_run_dapo_ours_code.sh # For Code RL
```

In the startup script, you need to set the following variables:
```bash
YOUR_MODEL_PATH="<your_model_path>"
CKPTS_SAVE_DIR="<ckpts_save_path>"
YOUR_TRAIN_FILE="<train_data_path>"
YOUR_TEST_FILE="<test_data_path>"
```

## 🀝 Citation
If you find this work helpful, please cite our paper:
```bibtex
@misc{su2025klearreasoneradvancingreasoningcapability,
      title={Klear-Reasoner: Advancing Reasoning Capability via Gradient-Preserving Clipping Policy Optimization}, 
      author={Zhenpeng Su and Leiyu Pan and Xue Bai and Dening Liu and Guanting Dong and Jiaming Huang and Wenping Hu and Fuzheng Zhang and Kun Gai and Guorui Zhou},
      year={2025},
      eprint={2508.07629},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2508.07629}, 
}
```