Model Card for Model ID
The bert-base-robson-criteria-classification-ner-es is a Named Entity Recognition (NER) model for the Spanish language fine-tuned from the RoBERTa base model.
Model Details
Model Description
In the table below, we have outlined the entities set. Most entities are based on the obstetric variables described in the Robson Implementation Manual Robson Classification: Implementation Manual. However, we have added nine additional entities related to the use of antibiotics, uterotonics, dose, posology, complications, obstetric hemorrhage, the outcome of delivery (whether it was a vaginal birth or a cesarean section), and the personal information within the Electronic Health Records (EHRs).
Clinical entities set
No | Spanish Entity | English Entity | Obsetric variable |
---|---|---|---|
1 | Parto nulΓpara | Nullipara labor | Parity |
2 | Parto multΓpara | Multipara labor | |
3 | CesΓ‘rea previa (Si) | One or more Cesarean Section | Previous Cesarean Section |
4 | CesΓ‘rea previa (No) | None Cesarean Section | |
5 | TDP espontΓ‘neo | Spontaneous labor | Onset of labour |
6 | TDP inducido | Induced labor | |
7 | TDP No: cesΓ‘rea programada | No labor, scheduled Cesarean Section | |
8 | Embarazo ΓΊnico | Singleton pregnancy | Number of fetuses |
9 | Embarazo MΓΊltiple | Multiple pregnancy | |
10 | Edad < 37 semanas | Preterm pregnancy | Gestational age |
11 | Edad β₯ 37 semanas | Term pregnancy | |
12 | PosiciΓ³n cefΓ‘lica | Cephalic presentation | Fetal lie and presentation |
13 | PosiciΓ³n podΓ‘lica | Breech presentation | |
14 | SituaciΓ³n transversa | Transverse lie | |
15 | AntibiΓ³tico | Antibiotic | |
16 | ComplicaciΓ³n | Complication | |
17 | Dosis | Dose | |
18 | Hemorragia ObstΓ©trica | Obstetric Hemorrhage | |
19 | Info personal | Personal Information | |
20 | PosologΓa | Posology | |
21 | Tipo de resoluciΓ³n: parto | Delivery resolution: VB | |
22 | Tipo de resoluciΓ³n: cesarea | Delivery resolution: CS | |
23 | UterotΓ³nico | Uterotonic |
This model detects entities by classifying every token according to the IOB format:
['O', 'B-AntibiΓ³tico', 'I-AntibiΓ³tico', 'B-CesΓ‘rea previa (NO)', 'I-CesΓ‘rea previa (NO)', 'B-CesΓ‘rea previa (SI)', 'I-CesΓ‘rea previa (SI)', 'B-ComplicaciΓ³n', 'I-ComplicaciΓ³n', 'B-Dosis', 'I-Dosis', 'B-Edad < 37 semanas', 'I-Edad < 37 semanas', 'B-Edad >= 37 semanas', 'I-Edad >= 37 semanas', 'B-Embarazo mΓΊltiple', 'I-Embarazo mΓΊltiple', 'B-Embarazo ΓΊnico', 'I-Embarazo ΓΊnico', 'B-Hemorragia obstΓ©trica', 'I-Hemorragia obstΓ©trica', 'B-Info personal', 'I-Info personal', 'B-Parto multΓpara', 'I-Parto multΓpara', 'B-Parto nulΓpara', 'I-Parto nulΓpara', 'B-PosiciΓ³n cefΓ‘lica', 'I-PosiciΓ³n cefΓ‘lica', 'B-PosiciΓ³n podΓ‘lica', 'I-PosiciΓ³n podΓ‘lica', 'B-PosologΓa', 'I-PosologΓa', 'B-SituaciΓ³n transversa', 'I-SituaciΓ³n transversa', 'B-TDP No: cesΓ‘rea programada', 'I-TDP No: cesΓ‘rea programada', 'B-TDP espontΓ‘neo', 'I-TDP espontΓ‘neo', 'B-TDP inducido', 'I-TDP inducido', 'B-Tipo de resoluciΓ³n: cesΓ‘rea', 'I-Tipo de resoluciΓ³n: cesΓ‘rea', 'B-Tipo de resoluciΓ³n: parto', 'I-Tipo de resoluciΓ³n: parto', 'B-UterotΓ³nico', 'I-UterotΓ³nico']
π€ Author
Created by Orlando Ramos.
This model is part of the organization's efforts LATEiimas.
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by: [More Information Needed]
- Funded by [optional]: [More Information Needed]
- Shared by [optional]: [More Information Needed]
- Model type: [More Information Needed]
- Language(s) (NLP): [More Information Needed]
- License: [More Information Needed]
- Finetuned from model [optional]: [More Information Needed]
Model Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed]
Software
[More Information Needed]
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]
- Downloads last month
- 10
Model tree for LATEiimas/bert-base-robson-criteria-classification-ner-es
Base model
google-bert/bert-base-multilingual-cased