Model Card for Model ID

The bert-base-robson-criteria-classification-ner-es is a Named Entity Recognition (NER) model for the Spanish language fine-tuned from the RoBERTa base model.

Model Details

Model Description

In the table below, we have outlined the entities set. Most entities are based on the obstetric variables described in the Robson Implementation Manual Robson Classification: Implementation Manual. However, we have added nine additional entities related to the use of antibiotics, uterotonics, dose, posology, complications, obstetric hemorrhage, the outcome of delivery (whether it was a vaginal birth or a cesarean section), and the personal information within the Electronic Health Records (EHRs).

Clinical entities set

No Spanish Entity English Entity Obsetric variable
1Parto nulΓ­paraNullipara laborParity
2Parto multΓ­paraMultipara labor
3CesΓ‘rea previa (Si)One or more Cesarean SectionPrevious Cesarean Section
4CesΓ‘rea previa (No)None Cesarean Section
5TDP espontΓ‘neoSpontaneous laborOnset of labour
6TDP inducidoInduced labor
7TDP No: cesΓ‘rea programadaNo labor, scheduled Cesarean Section
8Embarazo ΓΊnicoSingleton pregnancyNumber of fetuses
9Embarazo MΓΊltipleMultiple pregnancy
10Edad < 37 semanasPreterm pregnancyGestational age
11Edad β‰₯ 37 semanasTerm pregnancy
12PosiciΓ³n cefΓ‘licaCephalic presentationFetal lie and presentation
13PosiciΓ³n podΓ‘licaBreech presentation
14SituaciΓ³n transversaTransverse lie
15AntibiΓ³ticoAntibiotic
16ComplicaciΓ³nComplication
17DosisDose
18Hemorragia ObstΓ©trica Obstetric Hemorrhage
19Info personalPersonal Information
20PosologΓ­aPosology
21Tipo de resoluciΓ³n: partoDelivery resolution: VB
22Tipo de resoluciΓ³n: cesareaDelivery resolution: CS
23UterotΓ³nicoUterotonic

This model detects entities by classifying every token according to the IOB format:

['O', 'B-AntibiΓ³tico', 'I-AntibiΓ³tico', 'B-CesΓ‘rea previa (NO)', 'I-CesΓ‘rea previa (NO)', 'B-CesΓ‘rea previa (SI)', 'I-CesΓ‘rea previa (SI)', 'B-ComplicaciΓ³n', 'I-ComplicaciΓ³n', 'B-Dosis', 'I-Dosis', 'B-Edad < 37 semanas', 'I-Edad < 37 semanas', 'B-Edad >= 37 semanas', 'I-Edad >= 37 semanas', 'B-Embarazo mΓΊltiple', 'I-Embarazo mΓΊltiple', 'B-Embarazo ΓΊnico', 'I-Embarazo ΓΊnico', 'B-Hemorragia obstΓ©trica', 'I-Hemorragia obstΓ©trica', 'B-Info personal', 'I-Info personal', 'B-Parto multΓ­para', 'I-Parto multΓ­para', 'B-Parto nulΓ­para', 'I-Parto nulΓ­para', 'B-PosiciΓ³n cefΓ‘lica', 'I-PosiciΓ³n cefΓ‘lica', 'B-PosiciΓ³n podΓ‘lica', 'I-PosiciΓ³n podΓ‘lica', 'B-PosologΓ­a', 'I-PosologΓ­a', 'B-SituaciΓ³n transversa', 'I-SituaciΓ³n transversa', 'B-TDP No: cesΓ‘rea programada', 'I-TDP No: cesΓ‘rea programada', 'B-TDP espontΓ‘neo', 'I-TDP espontΓ‘neo', 'B-TDP inducido', 'I-TDP inducido', 'B-Tipo de resoluciΓ³n: cesΓ‘rea', 'I-Tipo de resoluciΓ³n: cesΓ‘rea', 'B-Tipo de resoluciΓ³n: parto', 'I-Tipo de resoluciΓ³n: parto', 'B-UterotΓ³nico', 'I-UterotΓ³nico']

🀝 Author

Created by Orlando Ramos.
This model is part of the organization's efforts LATEiimas.

This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Downloads last month
10
Safetensors
Model size
177M params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for LATEiimas/bert-base-robson-criteria-classification-ner-es

Finetuned
(692)
this model