whisper-lang-id
This model is a fine-tuned version of openai/whisper-tiny on mozilla-foundation/common_voice_11_0 dataset
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
Mozilla foundation/common_voice_11.0
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 1.0 | 175 | 0.0148 | 0.995 | 0.9950 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.
Example Usage
Here is an example of how to use the model for Language Idenfication with Gradio:
import torch
from transformers import pipeline
import gradio as gr
# Use a pipeline as a high-level helper
pipe = pipeline("audio-classification", model="Lingalingeswaran/whisper-lang-id")
def identify_language(audio_file):
"""Identifies the language of an audio file."""
try:
result = pipe(audio_file)
predicted_label = result[0]['label']
score = result[0]['score']
if predicted_label == "LABEL_0":
predicted_label = "Tamil"
elif predicted_label == "LABEL_1":
predicted_label = "English"
else:
predicted_label = predicted_label
return f"Predicted Language: {predicted_label}, Score: {score:.4f}"
except Exception as e:
return f"Error during language identification: {e}"
# Gradio interface
def create_gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("### Language Identification from Audio File")
gr.Markdown("Upload an audio file or use your microphone to detect the language spoken.")
# Corrected the sources argument
audio_input = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Record or Upload Audio")
result_output = gr.Textbox(label="Language Identification Result", interactive=False)
# Submit button
submit_btn = gr.Button("Submit")
submit_btn.click(identify_language, inputs=audio_input, outputs=result_output)
# Clear button
clear_btn = gr.Button("Clear")
clear_btn.click(lambda: (None, None), outputs=[audio_input, result_output]) # Clear audio and result
demo.launch()
# Run the Gradio interface
create_gradio_interface()
- Downloads last month
- 42
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Lingalingeswaran/whisper-lang-id
Base model
openai/whisper-tiny