Lingalingeswaran's picture
Update README.md
ec442de verified
metadata
library_name: transformers
language:
  - si
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - Lingalingeswaran/asr-sinhala-dataset_json_v1
metrics:
  - wer
model-index:
  - name: Whisper Small sinhala v3 - Lingalingeswaran
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Lingalingeswaran/asr-sinhala-dataset_json_v1
          type: Lingalingeswaran/asr-sinhala-dataset_json_v1
          args: 'config: si, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 46.457654723127035

Whisper Small sinhala v3 - Lingalingeswaran

This model is a fine-tuned version of openai/whisper-small on the Lingalingeswaran/asr-sinhala-dataset_json_v1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2086
  • Wer: 46.4577

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 3000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1852 1.7606 1000 0.1875 50.9772
0.0602 3.5211 2000 0.1886 47.5774
0.0238 5.2817 3000 0.2086 46.4577

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0

Example Usage

Here is an example of how to use the model for Sinhala speech recognition with Gradio:

import gradio as gr
from transformers import pipeline

# Initialize the pipeline with the specified model
pipe = pipeline(model="Lingalingeswaran/whisper-small-sinhala_v3")

def transcribe(audio):
    # Transcribe the audio file to text
    text = pipe(audio)["text"]
    return text

# Create the Gradio interface

iface = gr.Interface(
    fn=transcribe,
    inputs=gr.Audio(sources=["microphone", "upload"], type="filepath"),
    outputs="text",
    title="Whisper Small Sinhala",
    description="Realtime demo for Sinhala speech recognition using a fine-tuned Whisper small model.",
)

# Launch the interface
if __name__ == "__main__":
    iface.launch()