whisper-tiny-ta / README.md
Lingalingeswaran's picture
Update README.md
c0ae1c1 verified
metadata
library_name: transformers
language:
  - ta
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: whisper-tiny-tamil-Lingalingeswaran
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: ta
          split: None
          args: 'config: ta, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 58.67

whisper-tiny-tamil-Lingalingeswaran

This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.456
  • Wer: 58.67

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0

Example Usage


import gradio as gr
from transformers import pipeline

# Initialize the pipeline with the specified model
pipe = pipeline(model="Lingalingeswaran/whisper-tiny-ta")

def transcribe(audio):
    # Transcribe the audio file to text
    text = pipe(audio)["text"]
    return text

# Create the Gradio interface

iface = gr.Interface(
    fn=transcribe,
    inputs=gr.Audio(sources=["microphone", "upload"], type="filepath"),
    outputs="text",
    title="Whisper tiny tamil",
    description="Realtime demo for Tamil speech recognition using a fine-tuned Whisper tiny model.",
)

# Launch the interface
if __name__ == "__main__":
    iface.launch()