Phi0503MA1
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0775
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.1914 | 0.09 | 10 | 0.5548 |
0.2865 | 0.18 | 20 | 0.1504 |
0.1558 | 0.27 | 30 | 0.1456 |
0.1411 | 0.36 | 40 | 0.1214 |
0.1262 | 0.45 | 50 | 0.1157 |
0.1197 | 0.54 | 60 | 0.0929 |
0.0972 | 0.63 | 70 | 0.0897 |
0.0865 | 0.73 | 80 | 0.0826 |
0.0826 | 0.82 | 90 | 0.0860 |
0.0852 | 0.91 | 100 | 0.0789 |
0.0746 | 1.0 | 110 | 0.0734 |
0.0511 | 1.09 | 120 | 0.0780 |
0.0526 | 1.18 | 130 | 0.0776 |
0.0565 | 1.27 | 140 | 0.0645 |
0.046 | 1.36 | 150 | 0.0765 |
0.0583 | 1.45 | 160 | 0.0648 |
0.0495 | 1.54 | 170 | 0.0648 |
0.0506 | 1.63 | 180 | 0.0627 |
0.0467 | 1.72 | 190 | 0.0618 |
0.0481 | 1.81 | 200 | 0.0631 |
0.0446 | 1.9 | 210 | 0.0618 |
0.0431 | 1.99 | 220 | 0.0668 |
0.0209 | 2.08 | 230 | 0.0712 |
0.0198 | 2.18 | 240 | 0.0817 |
0.0148 | 2.27 | 250 | 0.0924 |
0.0153 | 2.36 | 260 | 0.0941 |
0.0213 | 2.45 | 270 | 0.0867 |
0.0161 | 2.54 | 280 | 0.0803 |
0.0153 | 2.63 | 290 | 0.0790 |
0.0196 | 2.72 | 300 | 0.0775 |
0.0182 | 2.81 | 310 | 0.0777 |
0.0176 | 2.9 | 320 | 0.0774 |
0.0154 | 2.99 | 330 | 0.0775 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/Phi0503MA1
Base model
microsoft/Phi-3-mini-4k-instruct