|
--- |
|
license: apache-2.0 |
|
base_model: Helsinki-NLP/opus-mt-ko-en |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: opus-mt-ko-en-finetuned-en-to-ko |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# opus-mt-ko-en-finetuned-en-to-ko |
|
|
|
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ko-en](https://huggingface.co/Helsinki-NLP/opus-mt-ko-en) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.8819 |
|
- Bleu: 3.0442 |
|
- Gen Len: 29.6731 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| |
|
| No log | 1.0 | 167 | 3.5090 | 1.476 | 100.3664 | |
|
| No log | 2.0 | 334 | 3.2940 | 1.563 | 54.8715 | |
|
| 3.6569 | 3.0 | 501 | 3.1777 | 2.8026 | 34.1871 | |
|
| 3.6569 | 4.0 | 668 | 3.0641 | 2.409 | 35.7632 | |
|
| 3.6569 | 5.0 | 835 | 2.9988 | 3.0125 | 33.5423 | |
|
| 3.0398 | 6.0 | 1002 | 2.9581 | 2.7402 | 27.7182 | |
|
| 3.0398 | 7.0 | 1169 | 2.9170 | 2.7127 | 31.9346 | |
|
| 3.0398 | 8.0 | 1336 | 2.9007 | 2.907 | 28.7711 | |
|
| 2.8619 | 9.0 | 1503 | 2.8891 | 2.9215 | 28.9775 | |
|
| 2.8619 | 10.0 | 1670 | 2.8819 | 3.0442 | 29.6731 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.0.1 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|