Dolphin 2.9.1 Yi 1.5 34b π¬
Curated and trained by Eric Hartford, Lucas Atkins, and Fernando Fernandes, and Cognitive Computations
This is our most spectacular outcome ever. FFT, all parameters, 16bit. 77.4 MMLU on 34b. And it talks like a dream.
Although the max positional embeddings is 4k, we used rope theta of 1000000.0 and we trained with sequence length 8k. We plan to train on the upcoming 32k version as well.
Discord: https://discord.gg/8fbBeC7ZGx
Our appreciation for the sponsors of Dolphin 2.9.1:
- Crusoe Cloud - provided excellent on-demand 8xH100 node
- OnDemand - provided inference sponsorship
This model is based on Yi-1.5-34b, and is governed by apache 2.0 license.
The base model has 4k context, but we used rope theta of 1000000.0 and the full-weight fine-tuning was with 8k sequence length.
Dolphin 2.9.1 uses ChatML prompt template format.
example:
<|im_start|>system
You are Dolphin, a helpful AI assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
Dolphin-2.9.1 has a variety of instruction, conversational, and coding skills. It also has initial agentic abilities and supports function calling.
Dolphin is uncensored. We have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant with any requests, even unethical ones. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models You are responsible for any content you create using this model. Enjoy responsibly.
Dolphin is licensed according to apache 2.0 license. We grant permission for any use, including commercial. Dolphin was trained on data generated from GPT4, among other models.
Evals
Training
See axolotl config
axolotl version: 0.4.0
base_model: 01-ai/Yi-1.5-34B
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true
# load_in_8bit: false
# load_in_4bit: true
# strict: false
# adapter: qlora
# lora_modules_to_save: [embed_tokens, lm_head]
# lora_r: 32
# lora_alpha: 16
# lora_dropout: 0.05
# lora_target_linear: True
# lora_fan_in_fan_out:
datasets:
- path: /workspace/datasets/dolphin-2.9/dolphin201-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/dolphin-coder-translate-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/dolphin-coder-codegen-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/m-a-p_Code-Feedback-sharegpt-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/m-a-p_CodeFeedback-Filtered-Instruction-sharegpt-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/not_samantha_norefusals.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/Orca-Math-resort-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/agent_instruct_react_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/toolbench_instruct_j1s1_3k_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/toolbench_negative_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/toolbench_react_10p_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/toolbench_tflan_cot_30p_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/openhermes200k_unfiltered.jsonl
type: sharegpt
conversation: chatml
chat_template: chatml
dataset_prepared_path: yi34b
val_set_size: 0.01
output_dir: ./out-yi
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project: dolphin-2.9-yi-34b
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 1e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
# resume_from_checkpoint: /workspace/axolotl/dbrx-checkpoint
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 4
save_total_limit: 2
save_steps:
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.05
fsdp:
fsdp_config:
special_tokens:
bos_token: "<|startoftext|>"
eos_token: "<|im_end|>"
pad_token: "<unk>"
unk_token: "<unk>"
tokens:
- "<|im_start|>"
out-yi
This model is a fine-tuned version of 01-ai/Yi-1.5-34B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4425
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.6265 | 0.0 | 1 | 0.6035 |
0.4674 | 0.25 | 327 | 0.4344 |
0.4337 | 0.5 | 654 | 0.4250 |
0.4346 | 0.75 | 981 | 0.4179 |
0.3985 | 1.0 | 1308 | 0.4118 |
0.3128 | 1.23 | 1635 | 0.4201 |
0.3261 | 1.48 | 1962 | 0.4157 |
0.3259 | 1.73 | 2289 | 0.4122 |
0.3126 | 1.98 | 2616 | 0.4079 |
0.2265 | 2.21 | 2943 | 0.4441 |
0.2297 | 2.46 | 3270 | 0.4427 |
0.2424 | 2.71 | 3597 | 0.4425 |
Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.2.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 4
Model tree for LoneStriker/dolphin-2.9.1-yi-1.5-34b-8.0bpw-h8-exl2
Base model
01-ai/Yi-1.5-34B