Luandrie's picture
End of training
5bc79e0 verified
metadata
library_name: transformers
language:
  - en
license: mit
base_model: distil-whisper/distil-large-v3
tags:
  - generated_from_trainer
datasets:
  - lelapa/www_call_center_merged_en_corrected
metrics:
  - wer
model-index:
  - name: Distill Whisper Call Center Tforge Dev lr3
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: www_call_center_merged_en_corrected
          type: lelapa/www_call_center_merged_en_corrected
          args: 'config: en, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 44.3461781427669

Distill Whisper Call Center Tforge Dev lr3

This model is a fine-tuned version of distil-whisper/distil-large-v3 on the www_call_center_merged_en_corrected dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6777
  • Wer: 44.3462

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1582 3.0722 1000 1.3541 42.8617
0.0574 6.1444 2000 1.6777 44.3462

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.7.0+cu126
  • Datasets 3.6.0
  • Tokenizers 0.20.3