metadata
library_name: transformers
language:
- en
license: mit
base_model: distil-whisper/distil-large-v3
tags:
- generated_from_trainer
datasets:
- lelapa/www_call_center_merged_en_corrected
metrics:
- wer
model-index:
- name: Distill Whisper Call Center Tforge Dev lr3
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: www_call_center_merged_en_corrected
type: lelapa/www_call_center_merged_en_corrected
args: 'config: en, split: test'
metrics:
- name: Wer
type: wer
value: 44.3461781427669
Distill Whisper Call Center Tforge Dev lr3
This model is a fine-tuned version of distil-whisper/distil-large-v3 on the www_call_center_merged_en_corrected dataset. It achieves the following results on the evaluation set:
- Loss: 1.6777
- Wer: 44.3462
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.1582 | 3.0722 | 1000 | 1.3541 | 42.8617 |
0.0574 | 6.1444 | 2000 | 1.6777 | 44.3462 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.20.3