e5_Eau_v3
This model is a fine-tuned version of intfloat/multilingual-e5-large-instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0705
- Accuracy: 0.9745
- F1: 0.9749
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.5263 | 0.9942 | 86 | 0.1482 | 0.9487 | 0.9493 |
0.1935 | 1.9942 | 172 | 0.1506 | 0.9495 | 0.9499 |
0.1538 | 2.9942 | 258 | 0.0885 | 0.9692 | 0.9694 |
0.1279 | 3.9942 | 344 | 0.0759 | 0.9739 | 0.9737 |
0.1082 | 4.9942 | 430 | 0.0570 | 0.9772 | 0.9772 |
0.1231 | 5.9942 | 516 | 0.0522 | 0.9777 | 0.9778 |
0.093 | 6.9942 | 602 | 0.0546 | 0.9770 | 0.9771 |
0.0709 | 7.9942 | 688 | 0.0705 | 0.9745 | 0.9749 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 58
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Ludo33/e5_Eau_v3
Base model
intfloat/multilingual-e5-large-instruct