eurobert210m_Main_topic_v6
This model is a fine-tuned version of EuroBERT/EuroBERT-210m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0273
- Accuracy: 0.9889
- F1: 0.9890
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.8206 | 1.0 | 246 | 0.2862 | 0.9207 | 0.9208 |
0.2413 | 2.0 | 492 | 0.1516 | 0.9548 | 0.9547 |
0.1549 | 3.0 | 738 | 0.0985 | 0.9683 | 0.9683 |
0.1128 | 4.0 | 984 | 0.0853 | 0.9734 | 0.9735 |
0.0914 | 5.0 | 1230 | 0.0647 | 0.9777 | 0.9778 |
0.0798 | 6.0 | 1476 | 0.0701 | 0.9790 | 0.9791 |
0.0643 | 7.0 | 1722 | 0.0498 | 0.9839 | 0.9839 |
0.0562 | 8.0 | 1968 | 0.0414 | 0.9864 | 0.9864 |
0.0492 | 9.0 | 2214 | 0.0495 | 0.9835 | 0.9835 |
0.0469 | 10.0 | 2460 | 0.0371 | 0.9880 | 0.9880 |
0.0463 | 11.0 | 2706 | 0.0274 | 0.9895 | 0.9895 |
0.0413 | 12.0 | 2952 | 0.0273 | 0.9889 | 0.9890 |
Framework versions
- Transformers 4.50.2
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Ludo33/eurobert210m_Main_topic_v6
Base model
EuroBERT/EuroBERT-210m