eurobert210m_RSE_v1

This model is a fine-tuned version of EuroBERT/EuroBERT-210m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0069
  • Accuracy: 0.9982
  • F1: 0.9982

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.7448 1.0 138 0.2380 0.9194 0.9200
0.3157 2.0 276 0.1846 0.9421 0.9419
0.2241 3.0 414 0.1905 0.9373 0.9371
0.1923 4.0 552 0.0821 0.9739 0.9739
0.1312 5.0 690 0.1449 0.9614 0.9616
0.1418 6.0 828 0.0782 0.9796 0.9795
0.1008 7.0 966 0.0579 0.9877 0.9877
0.0981 8.0 1104 0.0363 0.9893 0.9893
0.0723 9.0 1242 0.1002 0.9789 0.9789
0.0846 10.0 1380 0.0457 0.9907 0.9907
0.0779 11.0 1518 0.0620 0.9880 0.9880
0.0676 12.0 1656 0.0314 0.9932 0.9932
0.0389 13.0 1794 0.0232 0.9950 0.9950
0.0453 14.0 1932 0.0145 0.9966 0.9966
0.0328 15.0 2070 0.0303 0.9936 0.9936
0.0316 16.0 2208 0.0247 0.9948 0.9948
0.0191 17.0 2346 0.0070 0.9984 0.9984
0.0209 18.0 2484 0.0069 0.9982 0.9982

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
212M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Ludo33/eurobert210m_RSE_v1

Finetuned
(28)
this model