A static embedding model tokenized with dbmdz/bert-base-german-uncased and mainly built on DE/EN-datasets as a base for further experiments.
This is a sentence-transformers model trained on 74 datasets (full list at the bottom). It maps sentences & paragraphs to a 2048-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Further explanations of how to build such a model, you can find in the Static Embeddings blogpost by Tom Aarsen in January 2025. It took me until the end of May to start this tiny spare time experiment.
After some tests with different tokenizers I decided to pick one of the oldest as it has performed best by delivering the smallest size (~240MB) – bert-base-german-uncased by the dbmdz-team.
- 99% performance: Unexpectedly this model scored nearly 99% in comparison to e5-base-sts-en-de during the GermanGovServiceRetrieval-Task in MTEB by taking only a 80th of the time (40.3 seconds vs. 0.49).
- Matryoshka: This model was trained with a Matryoshka loss, allowing you to truncate the embeddings for faster retrieval at minimal performance costs.
- Evaluations: See Evaluations for details on performance on German MTEB, special GermanGovService retrieval, embedding speed, and Matryoshka dimensionality truncation.
- Training Script: See base_train.py for the training script used to train this model from scratch (be warned - it is wildly commented).
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: inf tokens
- Output Dimensionality: 2048 dimensions
- Similarity Function: Cosine Similarity
- Training Datasets:
- mmarco - german only, filtered and with 3, 2, 1 hard negatives and (leave no sentence behind) the rest as 0 negatives:
- mmarco_3hn
- mmarco_2hn
- mmarco_1hn
- mmarco_0hn
- deutsche-telekom/wikipedia-22-12-de-dpr - deduplicated and recombined all different wordings of direct and indirect sentences. Built hard negatives but in the end reversed from hard negatives as it did not really work out.
- wp-22-12-de
- nthakur/swim-ir-monolingual - german only, deduplicated and different combinations with and without 3 hard negatives.
- swim_ir_de
- swim_ir_de_3hn
- swim_ir_de_title_3hn
- swim_ir_de_title
- avemio_triples - thanks to Avemio for this release.
- avemio_pairs - no pairs anymore - now with 3 hard negatives per pair and the rest as pairs:
- avemio_pairs_3hn
- avemio_pairs_0hn
- oliverguhr/natural-questions-german - combined english and german sentences with 3 and 1 hard negatives.
- nq_german_en_de_a_3hn
- nq_german_en_de_3hn
- nq_german_3hn
- nq_german_1hn
- AgentWaller/german-oasst1-qa-format - rebuilt with 3 hard negatives
- german_oasst1_hn
- germanrag_short
- jphme/slimorca_dedup_german_experimental - after scoring and filtering mined as many hard duplicates as possible and leave no sentence behind:
- slimorca_dedup_3hn
- slimorca_dedup_2hn
- slimorca_dedup_1hn
- slimorca_dedup_0hn
- CausalLM/GPT-4-Self-Instruct-German - after scoring and filtering mined 3 hard negatives:
- german_gpt4_3hn
- german_orca_dpo
- mayflowergmbh/alpaca-gpt4_de - after scoring and filtering mined 3 hard negatives and left no sentence behind (0hn):
- alpaca_gpt4_3hn
- alpaca_gpt4_0hn
- argilla/databricks-dolly-15k-curated-multilingual - after scoring and filtering mined 3 hard negatives and left no sentence behind (0hn) - but sometimes only 1 or 2 sentences were left:
- dolly_context_de_3hn
- dolly_context_ende_3hn
- dolly_instructions_de_3hn
- dolly_instructions_de_0hn
- dolly_instructions_ende_3hn
- dolly_responses_de_3hn
- dolly_responses_de_0hn
- dolly_responses_ende_3hn
- saf_legal_de
- lavis-nlp/german_legal_sentences - mined 3 hard negatives and left no sentences behind (0hn). Almost noone uses this dataset but for german law stuff, it's very helpful.
- gls_3hn
- gls_2hn
- gls_1hn
- gls_0hn
- sentence-transformers/parallel-sentences-europarl - after scoring, filtering and mining 3 hard negatives the results were much better - there are many "bad" trnaslations and even empty fields:
- europarl_3hn
- europarl_0hn
- sentence-transformers/parallel-sentences-tatoeba - mined 3 hard negatives and left no sentences behind (0hn):
- tatoeba_3hn
- tatoeba_0hn
- sentence-transformers/parallel-sentences-wikimatrix - mined 3 hard negatives but did not use the leftover sentence-pairs due low scores:
- wikimatrix_3hn
- laion/Wikipedia-Abstract - mined 3 hard negatives and left no sentences behind (0hn):
- wikipedia_abstract_3hn
- wikipedia_abstract_0hn
- jfeil/GermanDefinitionGeneration-Distillation - built multiple combinations for classifications of long to short, mined 3 hard negatives. Also built a short-word list without hard negatives:
- wiktionary_gdg_de_3hn
- wiktionary_gdg_de_short
- wmt24pp - filtered - not sure, if this is not in one of the benchmark datasets?
- synthia_de - filtered for "scores".
- deutsche-telekom/ger-backtrans-paraphrase - combined german/english sentences, filtered and mined 3 hard negatives.
- gbp_3hn
- gbp_ende_3hn
- PhilipMay/stsb_multi_mt - mined 3 hard negatives per each language version (german/english):
- stbs_de_3hn
- stbs_en_3hn
- google-research-datasets/paws-x
- pawsx_de
- pawsx_en
- MoritzLaurer/multilingual-NLI-26lang-2mil7 - with max. 3 hard negatives (german only)
- nli_anli_entail_3hn
- nli_fever_entail_3hn
- nli_ling_entail_3hn
- nli_mnli_entail_3hn
- nli_wanli_entail_3hn
- nli_anli_transl_3hn
- nli_fever_transl_3hn
- nli_ling_transl_3hn
- nli_mnli_transl_3hn
- nli_wanli_transl_3hn
- jinaai/parallel-sentences - with max. 3 hard negatives (with 3 german/english combinations)
- jina_ai_3en
- jina_ai_ende
- jina_ai_dede
- Polyglot-or-Not/Fact-Completion
- polyglot_de
- polyglot_en
- Tilde Model - EESC - an almost forgotten corpus from document texts of European Economic and Social Committee document portal.
- miracl/miracl-corpus - scored and filtered ('cos_sim_sts_de' > 0.5 and 'cos_sim_sts_de' < 0.85 and 'text_unique_tokens_de' > 6). Mined 3 hard negatives and left no sentence behind.
- miracl_de_3hn
- miracl_de_0hn
- mmarco - german only, filtered and with 3, 2, 1 hard negatives and (leave no sentence behind) the rest as 0 negatives:
- Languages: de, en
- License: eupl-1.2
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): StaticEmbedding(
(embedding): EmbeddingBag(31102, 2048, mode='mean')
)
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("MarcGrumpyOlejak/sts-mrl-en-de-base-v1")
# Run inference
queries = [
"Im April 1928 beschrieb er in seinem Artikel On the Construction of Tables by Interpolation die Verwendung von Lochkartenger\u00e4ten zum Interpolieren von Datentabellen und verglich dies mit den weniger effizienten und fehleranf\u00e4lligeren Methoden mit mechanischen Ger\u00e4ten wie den Windradrechnern unter dem Markennamen Brunsviga.",
]
documents = [
'Im April 1928 beschrieb er in seinem Artikel „On the Construction of Tables by Interpolation“ („Über die Erstellung von Tabellen durch Interpolation“) die Interpolation von Daten in Tabellen mit Hilfe von Lochkarten und verglich diese Methode mit dem uneffizienteren und fehleranfälligeren Verfahren, das mechanische Rechner verwendet.',
'POLES liefert nicht die direkten makro-ökonomischen Auswirkungen der Minderungsmaßnahmen wie im Stern-Report vorgesehen, erlaubt jedoch eine detaillierte Abschätzung der Kosten im Zusammenhang mit Techniken mit wenig Energieverbrauch oder Nullenergietechniken.',
'Im Lehrbuch Maschinenelemente – Funktion, Gestaltung und Berechnung von Decker (bisher 19 Auflagen) wird anhand praktischer Anwendungen mit Z88 die Berechnung von Maschinenelementen mit der Finiten-Elemente-Analyse gelehrt.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 2048] [3, 2048]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.7737, 0.1275, 0.1184]])
Out-of-Scope Use
After several tests it is not really good in reranking. Also everything about "news" is really low due the fact, that there is no open licensed and commercially usable dataset available. Maybe you have knowledge about an official free and open licensed news-based dataset. Feel free to contact me.
Evaluation
All steps and evaluations have been made locally on my very small hardware using a Nvidia RTX 2070 SUPER (8 GB) - no joke.
This model has been benchmarked using mainly the GermanGovServiceRetrieval task, developed by the Munich city administration. It associates questions with a textual context containing the answer. The idea is to train it further on based upon german based administraional classification datasets. After the first results the full german MTEB(deu, v1) has also been tested as the GermanGovServiceRetrieval test is not a part of the german MTEB-benchmark. While testing with NanoBEIR it has been shown to be a bit insufficient for testing bilingual german/english - but I accidentally outscored static-similarity-mrl-multilingual-v1 by 0.03 points ;)
As for the static embeddings being built using Model2Vec, with alikia2x/jina-embedding-v3-m2v-1024 I picked the largest one I could find with ~1GB size.
This model is compared against the excellent e5-base-sts-en-de model made by Daniel Heinz back in 2024 (ca. 1.1GB). The second model for comparisons with dense embeddings is the optimized granite-embedding-107m-multilingual model made by the IBM-Granite-team (ca. 770MB).
Benchmark details
Oops - I forgot to NanoBEIR granite-embedding-107m-multilingual - that's for the week-end.
NanoBEIR | MTEB | MTEB(deu, v1) – avg | |
---|---|---|---|
Dense Embeddings | NanoBEIR_mean_cosine_ndcg@10 | GermanGovServiceRetrieval | Naive (sum/num) |
e5-base-sts-en-de | 0,5320 | 0,7931 | 0,5194 |
granite-embedding-107m-multilingual | 0,7880 | 0,4992 | |
Static Embeddings | |||
static-retrieval-mrl-en-v1(*) | 0,5035 | 0,6630 | 0,3716 |
jina-embedding-v3-m2v-1024 | 0,3480 | 0,7260 | 0,4081 |
static-similarity-mrl-multilingual-v1 | 0,4350 | 0,7281 | 0,4259 |
sts-mrl-en-de-base-v1 | 0,4680 | 0,7841 | 0,4566 |
((*)'static-retrieval-mrl-en-v1' only for comparison to mainly english based NanoBEIR)
MTEB - GermanGovServiceRetrieval Evaluation
As e5-base-sts-en-de scores with 0.7931 in the GermanGovServiceRetrieval task, that means sts-mrl-en-de-base-v1 with 0.7841 achieves 98.865% for the same task by using only ~230MB RAM and a CPU.
So it is only 0,4949% behind granite-embedding-107m-multilingual.
MTEB(deu, v1) – avg
For the german version of the MTEB benchmark MTEB(deu, v1) the results are not as significant as the GermanGovServiceRetrieval task - but with 87,909% of quality in comparison to e5-base-sts-en-de you can use sts-mrl-en-de-base-v1 for example to mine hard negatives in a really short time instead of burning money with a whole bunch of GPU.
Even with the really well speed optimised granite-embedding-107m-multilingual being almost as fast as the static embeddings, you'll still need a GPU.
Matryoshka Evaluation
(have to be checked twice - looks like almost everyone has a glitch in the results … the results are better with a first reduction from 2048 down to 1024 dimensions? That's the 2nd thing for the week-end.)
Training Datasets
Sadly all details of the datasets had to be saved in a seperate file details_datasets.md as this README.md has a limit.
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 4096per_device_eval_batch_size
: 4096learning_rate
: 0.2num_train_epochs
: 1lr_scheduler_type
: cosinewarmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 4096per_device_eval_batch_size
: 4096per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.2weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | Training Loss | mmarco 3hn loss | mmarco 2hn loss | mmarco 1hn loss | mmarco 0hn loss | wp-22-12-de loss | swim ir de loss | swim ir de 3hn loss | swim ir de title 3hn loss | swim ir de title loss | avemio triples loss | avemio pairs 3hn loss | avemio pairs 0hn loss | nq german en de a 3hn loss | nq german en de 3hn loss | nq german 3hn loss | nq german 1hn loss | german oasst1 hn loss | germanrag short loss | slimorca dedup 3hn loss | slimorca dedup 2hn loss | slimorca dedup 1hn loss | slimorca dedup 0hn loss | german gpt4 3hn loss | german orca dpo loss | alpaca gpt4 3hn loss | alpaca gpt4 0hn loss | dolly context de 3hn loss | dolly context ende 3hn loss | dolly instructions de 3hn loss | dolly instructions de 0hn loss | dolly instructions ende 3hn loss | dolly responses de 3hn loss | dolly responses de 0hn loss | dolly responses ende 3hn loss | saf legal de loss | gls 3hn loss | gls 2hn loss | gls 1hn loss | gls 0hn loss | europarl 3hn loss | europarl 0hn loss | tatoeba 3hn loss | tatoeba 0hn loss | wikimatrix 3hn loss | wikipedia abstract 3hn loss | wikipedia abstract 0hn loss | wiktionary gdg de 3hn loss | wiktionary gdg de short loss | wmt24pp loss | synthia de loss | gbp 3hn loss | gbp ende 3hn loss | stbs de 3hn loss | stbs en 3hn loss | pawsx de loss | pawsx en loss | nli anli entail 3hn loss | nli fever entail 3hn loss | nli ling entail 3hn loss | nli mnli entail 3hn loss | nli wanli entail 3hn loss | nli anli transl 3hn loss | nli fever transl 3hn loss | nli ling transl 3hn loss | nli mnli transl 3hn loss | nli wanli transl 3hn loss | jina ai 3en loss | jina ai ende loss | jina ai dede loss | polyglot de loss | polyglot en loss | tilde EESC loss | miracl de 3hn loss | miracl de 0hn loss |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0002 | 1 | 32.2328 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1211 | 500 | 17.4935 | 5.9441 | 18.6286 | 15.4380 | 21.7452 | 11.5899 | 15.7739 | 2.0470 | 6.4545 | 28.7021 | 3.4327 | 3.0953 | 21.4473 | 0.6579 | 2.3081 | 8.3028 | 17.1118 | 8.6341 | 0.7353 | 2.4550 | 10.1110 | 20.2165 | 15.1944 | 11.2822 | 14.0772 | 9.3205 | 12.3671 | 3.6399 | 0.2185 | 2.5653 | 27.0853 | 2.1334 | 4.3423 | 2.3262 | 0.5350 | 20.1312 | 6.6543 | 11.5668 | 11.2751 | 15.0010 | 2.5165 | 46.8575 | 6.4837 | 17.8191 | 0.9617 | 7.7542 | 3.3035 | 17.7944 | 4.9850 | 0.5039 | 6.9794 | 0.4971 | 1.7211 | 7.5595 | 5.8076 | 2.1527 | 0.4983 | 9.9586 | 7.6724 | 4.5647 | 4.4193 | 4.3135 | 0.8089 | 2.2057 | 0.8494 | 1.5787 | 2.4122 | 9.0588 | 1.6716 | 5.7378 | 17.4829 | 17.4252 | 2.7128 | 2.3019 | 4.9855 |
0.2421 | 1000 | 9.8434 | 5.9548 | 16.1939 | 13.6828 | 19.8400 | 10.3624 | 13.5662 | 1.7398 | 4.7552 | 26.9780 | 2.7763 | 2.6297 | 19.2160 | 0.6367 | 2.2657 | 8.1566 | 15.8885 | 7.0793 | 0.7799 | 1.6238 | 9.2113 | 18.4966 | 14.8541 | 11.6090 | 17.8812 | 7.3860 | 7.7746 | 3.2721 | 0.1734 | 2.2635 | 27.3627 | 1.7248 | 4.0169 | 3.3867 | 0.4930 | 19.1067 | 7.0229 | 13.2283 | 13.9238 | 17.1221 | 2.0835 | 47.1417 | 6.2599 | 15.3082 | 0.7972 | 6.9853 | 2.7917 | 15.1196 | 4.4008 | 0.1748 | 6.5392 | 0.4433 | 1.3500 | 7.5248 | 5.8447 | 2.1663 | 0.4949 | 9.3473 | 6.2105 | 4.2394 | 4.1746 | 4.2383 | 0.6806 | 2.1903 | 0.6338 | 1.3037 | 2.0331 | 5.0726 | 1.0650 | 5.8712 | 17.3595 | 16.0869 | 1.9498 | 2.1635 | 4.1986 |
0.3632 | 1500 | 9.4195 | 6.0462 | 15.3733 | 13.4579 | 19.1822 | 10.1358 | 13.7938 | 2.0818 | 4.3716 | 26.0843 | 2.7380 | 2.6063 | 18.9278 | 0.6317 | 2.1179 | 8.5954 | 15.0949 | 6.2069 | 0.8866 | 1.5936 | 9.0869 | 18.6605 | 14.5752 | 12.3640 | 15.1111 | 7.5786 | 8.6830 | 2.9134 | 0.1539 | 2.3901 | 24.0635 | 1.5851 | 3.0859 | 2.8681 | 0.4823 | 20.1934 | 6.9440 | 11.9040 | 11.6429 | 13.5179 | 1.9956 | 46.0385 | 6.0581 | 15.7130 | 0.7430 | 6.2928 | 2.9993 | 14.2742 | 4.1868 | 0.1639 | 5.8340 | 0.4744 | 1.3372 | 7.7122 | 5.6745 | 2.1703 | 0.4930 | 9.6020 | 6.0473 | 3.5016 | 3.7158 | 4.2441 | 0.5784 | 2.1883 | 0.5912 | 1.2164 | 1.9767 | 7.0197 | 1.0216 | 4.4556 | 14.8992 | 15.8563 | 1.8581 | 2.1515 | 4.4043 |
0.4843 | 2000 | 8.2114 | 5.8039 | 14.9131 | 12.9781 | 18.3934 | 9.9055 | 13.5402 | 2.0944 | 4.4961 | 26.2583 | 2.6002 | 2.5542 | 18.3124 | 0.5504 | 1.7278 | 8.4266 | 12.8837 | 5.5970 | 0.7967 | 1.5002 | 8.8843 | 18.2636 | 15.5366 | 12.1376 | 13.7508 | 6.1530 | 6.6779 | 2.2906 | 0.1435 | 1.8996 | 21.9520 | 1.5331 | 2.7177 | 3.0663 | 0.4214 | 19.7372 | 6.1346 | 10.9578 | 10.5089 | 13.6577 | 1.8838 | 46.2217 | 4.1247 | 12.9807 | 0.6397 | 6.3777 | 2.5970 | 13.7871 | 4.1784 | 0.1893 | 4.4490 | 0.4018 | 1.1374 | 7.1980 | 5.6566 | 2.1517 | 0.4921 | 9.2049 | 6.0599 | 3.4091 | 3.6662 | 4.0776 | 0.4841 | 2.0716 | 0.4860 | 0.9970 | 1.7709 | 7.5693 | 0.6321 | 4.9397 | 14.5334 | 15.4385 | 1.7821 | 1.9614 | 4.2582 |
0.6053 | 2500 | 8.038 | 5.5500 | 14.8000 | 12.8634 | 18.2342 | 9.7964 | 13.2195 | 1.9088 | 4.2172 | 25.7571 | 2.4768 | 2.4510 | 17.9053 | 0.4689 | 1.8237 | 8.1981 | 12.5957 | 6.0768 | 0.6939 | 1.5240 | 9.6936 | 18.5641 | 16.5833 | 12.5368 | 13.6839 | 6.6175 | 7.2916 | 2.3097 | 0.1377 | 1.9064 | 22.0331 | 1.5278 | 2.5185 | 4.8549 | 0.3997 | 20.1505 | 6.0001 | 10.3536 | 9.9127 | 12.7608 | 1.7728 | 46.1264 | 3.4876 | 13.2839 | 0.6246 | 6.0571 | 2.5264 | 13.6899 | 4.1796 | 0.1133 | 5.5862 | 0.3973 | 1.1315 | 7.0625 | 5.7281 | 2.1597 | 0.4939 | 9.3306 | 5.8505 | 3.0920 | 3.6364 | 4.2557 | 0.4513 | 1.9419 | 0.4341 | 0.7909 | 1.6440 | 7.5517 | 0.6997 | 4.9564 | 14.5145 | 15.7047 | 1.6838 | 1.9027 | 4.2791 |
0.7264 | 3000 | 8.4735 | 5.4690 | 14.0184 | 12.4418 | 17.2256 | 9.5584 | 12.8587 | 1.8026 | 4.2292 | 25.0699 | 2.4180 | 2.3386 | 17.5121 | 0.4924 | 1.7512 | 8.6264 | 12.9932 | 5.7242 | 0.7519 | 1.4209 | 8.7996 | 17.9024 | 15.0738 | 10.3888 | 12.8886 | 6.9268 | 7.5737 | 2.4082 | 0.1446 | 1.9202 | 22.0949 | 1.4499 | 2.7943 | 3.8219 | 0.4096 | 20.1391 | 5.9977 | 10.2577 | 9.9893 | 12.8969 | 1.8217 | 45.9583 | 3.6835 | 14.0661 | 0.6401 | 5.8992 | 2.4225 | 13.6148 | 4.0275 | 0.1058 | 4.2324 | 0.4046 | 1.1448 | 7.2012 | 5.7275 | 2.1669 | 0.4947 | 8.9883 | 5.8919 | 3.4086 | 3.5578 | 3.8109 | 0.4713 | 2.0382 | 0.4806 | 0.9071 | 1.7479 | 7.4633 | 0.6957 | 5.1938 | 14.2104 | 15.6664 | 1.7301 | 1.9228 | 4.1841 |
0.8475 | 3500 | 7.7352 | 5.3754 | 14.0426 | 12.5198 | 17.3227 | 9.4857 | 12.9446 | 1.8784 | 4.2447 | 25.1068 | 2.3991 | 2.3495 | 17.5300 | 0.4642 | 1.6235 | 8.4671 | 12.8252 | 5.3035 | 0.7126 | 1.4499 | 8.4552 | 16.9827 | 14.6279 | 10.8074 | 12.8392 | 6.5745 | 7.2679 | 2.4318 | 0.1319 | 1.8556 | 22.2088 | 1.3227 | 2.6365 | 4.3796 | 0.3783 | 20.1810 | 5.9464 | 10.2856 | 9.9382 | 12.6812 | 1.6933 | 46.2977 | 3.6286 | 13.8749 | 0.5844 | 5.8990 | 2.4661 | 13.3314 | 4.0382 | 0.1148 | 4.3655 | 0.4017 | 1.0360 | 7.1329 | 5.7121 | 2.1640 | 0.4945 | 8.9242 | 5.6470 | 3.2758 | 3.5739 | 4.0207 | 0.4303 | 1.9566 | 0.4515 | 0.8112 | 1.6914 | 7.4063 | 0.6659 | 5.2429 | 13.9946 | 15.6856 | 1.5650 | 1.8613 | 4.3350 |
0.9685 | 4000 | 7.4739 | 5.3820 | 13.9713 | 12.4551 | 17.2949 | 9.4687 | 12.9339 | 1.9303 | 4.2006 | 25.0763 | 2.3880 | 2.3362 | 17.4705 | 0.4638 | 1.6235 | 8.3594 | 12.6393 | 5.3609 | 0.7168 | 1.4452 | 8.3913 | 16.8145 | 14.9649 | 10.7862 | 12.5774 | 6.6076 | 7.1481 | 2.3770 | 0.1320 | 1.8618 | 22.2842 | 1.3191 | 2.6045 | 4.6015 | 0.3718 | 14.6598 | 5.9303 | 10.1947 | 9.8502 | 12.5003 | 1.6814 | 46.1385 | 3.6696 | 13.8947 | 0.5799 | 5.8546 | 2.4445 | 13.3022 | 4.0359 | 0.1090 | 4.4493 | 0.3932 | 1.0395 | 7.1369 | 5.6920 | 2.1641 | 0.4943 | 8.9089 | 5.6356 | 3.2438 | 3.5664 | 4.0016 | 0.4297 | 1.9810 | 0.4511 | 0.8123 | 1.6705 | 7.4795 | 0.6834 | 5.2668 | 13.9481 | 15.6508 | 1.5442 | 1.8556 | 4.3036 |
Framework Versions
- Python: 3.10.15
- Sentence Transformers: 5.0.0
- Transformers: 4.51.3
- PyTorch: 2.1.0+cu121
- Accelerate: 1.3.0
- Datasets: 2.21.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
GermanGovServiceRetrieval
@software{lhm-dienstleistungen-qa,
author = {Schröder, Leon Marius and
Gutknecht, Clemens and
Alkiddeh, Oubada and
Susanne Weiß,
Lukas, Leon},
month = nov,
publisher = {it@M},
title = {LHM-Dienstleistungen-QA - german public domain question-answering dataset},
url = {https://huggingface.co/datasets/it-at-m/LHM-Dienstleistungen-QA},
year = {2022},
}
MMTEB
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
MTEB
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}