Upload folder using huggingface_hub
Browse files- README.md +129 -1
- config_sentence_transformers.json +14 -0
- img/time_vs_MTEB-GGSR.png +0 -0
- img/time_vs_MTEB-deuV1.png +0 -0
- model.safetensors +3 -0
- modules.json +8 -0
- tokenizer.json +0 -0
- train_base.py +1267 -0
README.md
CHANGED
@@ -3,4 +3,132 @@ license: eupl-1.2
|
|
3 |
language:
|
4 |
- de
|
5 |
- en
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
language:
|
4 |
- de
|
5 |
- en
|
6 |
+
tags:
|
7 |
+
- sentence-transformers
|
8 |
+
- sentence-similarity
|
9 |
+
- feature-extraction
|
10 |
+
- dense
|
11 |
+
- generated_from_trainer
|
12 |
+
- dataset_size:16753490
|
13 |
+
- loss:MatryoshkaLoss
|
14 |
+
- loss:MultipleNegativesRankingLoss
|
15 |
+
datasets:
|
16 |
+
- avemio/German-RAG-EMBEDDING-TRIPLES-HESSIAN-AI
|
17 |
+
- MarcGrumpyOlejak/germanrag-scored
|
18 |
+
- MarcGrumpyOlejak/ultradistil-intel-orca-dpo-de-scored
|
19 |
+
- Short-Answer-Feedback/saf_legal_domain_german
|
20 |
+
- jfeil/GermanDefinitionGeneration-Distillation
|
21 |
+
- google/wmt24pp
|
22 |
+
- jphme/synthia_german_experimental
|
23 |
+
- google-research-datasets/paws-x
|
24 |
+
- jinaai/parallel-sentences
|
25 |
+
- Polyglot-or-Not/Fact-Completion
|
26 |
+
pipeline_tag: sentence-similarity
|
27 |
+
library_name: sentence-transformers
|
28 |
+
---
|
29 |
+
|
30 |
+
# A static embedding model tokenized with dbmdz/bert-base-german-uncased and mainly built on DE/EN-datasets as a base for further experiments.
|
31 |
+
|
32 |
+
This is a [sentence-transformers](https://www.SBERT.net) model trained on 74 datasets (full list at the bottom). It maps sentences & paragraphs to a 2048-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
33 |
+
|
34 |
+
Further explanations of how to build such a model, you can find in the [Static Embeddings blogpost](https://huggingface.co/blog/static-embeddings) by [Tom Aarsen](https://huggingface.co/tomaarsen) in January 2025. It took me until the end of May to start this tiny spare time experiment.
|
35 |
+
|
36 |
+
After some tests with different tokenizers I decided to pick one of the oldest as it has performed best by delivering the smallest size (~240MB) – [bert-base-german-uncased by the dbmdz-team](https://huggingface.co/dbmdz/bert-base-german-uncased).
|
37 |
+
|
38 |
+
* **99% performance:** Unexpectedly this model scored nearly 99% in comparison to [e5-base-sts-en-de](https://huggingface.co/danielheinz/e5-base-sts-en-de) during the GermanGovServiceRetrieval-Task in MTEB by taking only a 80th of the time (40.3 seconds vs. 0.49).
|
39 |
+
* **Matryoshka:** This model was trained with a [Matryoshka loss](https://huggingface.co/blog/matryoshka), allowing you to truncate the embeddings for faster retrieval at minimal performance costs.
|
40 |
+
* **Evaluations:** See [Evaluations](#evaluation) for details on performance on German MTEB, special GermanGovService retrieval, embedding speed, and Matryoshka dimensionality truncation.
|
41 |
+
* **Training Script:** See [base_train.py](base_train.py) for the training script used to train this model from scratch (be warned - it is wildly commented).
|
42 |
+
|
43 |
+
## Model Details
|
44 |
+
|
45 |
+
### Model Description
|
46 |
+
- **Model Type:** Sentence Transformer
|
47 |
+
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
48 |
+
- **Maximum Sequence Length:** inf tokens
|
49 |
+
- **Output Dimensionality:** 2048 dimensions
|
50 |
+
- **Similarity Function:** Cosine Similarity
|
51 |
+
|
52 |
+
## Citation
|
53 |
+
|
54 |
+
### BibTeX
|
55 |
+
|
56 |
+
#### Sentence Transformers
|
57 |
+
```bibtex
|
58 |
+
@inproceedings{reimers-2019-sentence-bert,
|
59 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
60 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
61 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
62 |
+
month = "11",
|
63 |
+
year = "2019",
|
64 |
+
publisher = "Association for Computational Linguistics",
|
65 |
+
url = "https://arxiv.org/abs/1908.10084",
|
66 |
+
}
|
67 |
+
```
|
68 |
+
|
69 |
+
#### MatryoshkaLoss
|
70 |
+
```bibtex
|
71 |
+
@misc{kusupati2024matryoshka,
|
72 |
+
title={Matryoshka Representation Learning},
|
73 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
74 |
+
year={2024},
|
75 |
+
eprint={2205.13147},
|
76 |
+
archivePrefix={arXiv},
|
77 |
+
primaryClass={cs.LG}
|
78 |
+
}
|
79 |
+
```
|
80 |
+
|
81 |
+
#### MultipleNegativesRankingLoss
|
82 |
+
```bibtex
|
83 |
+
@misc{henderson2017efficient,
|
84 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
85 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
86 |
+
year={2017},
|
87 |
+
eprint={1705.00652},
|
88 |
+
archivePrefix={arXiv},
|
89 |
+
primaryClass={cs.CL}
|
90 |
+
}
|
91 |
+
```
|
92 |
+
|
93 |
+
#### GermanGovServiceRetrieval
|
94 |
+
```bibtex
|
95 |
+
@software{lhm-dienstleistungen-qa,
|
96 |
+
author = {Schröder, Leon Marius and
|
97 |
+
Gutknecht, Clemens and
|
98 |
+
Alkiddeh, Oubada and
|
99 |
+
Susanne Weiß,
|
100 |
+
Lukas, Leon},
|
101 |
+
month = nov,
|
102 |
+
publisher = {it@M},
|
103 |
+
title = {LHM-Dienstleistungen-QA - german public domain question-answering dataset},
|
104 |
+
url = {https://huggingface.co/datasets/it-at-m/LHM-Dienstleistungen-QA},
|
105 |
+
year = {2022},
|
106 |
+
}
|
107 |
+
```
|
108 |
+
|
109 |
+
#### MMTEB
|
110 |
+
```bibtex
|
111 |
+
@article{enevoldsen2025mmtebmassivemultilingualtext,
|
112 |
+
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
|
113 |
+
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
|
114 |
+
publisher = {arXiv},
|
115 |
+
journal={arXiv preprint arXiv:2502.13595},
|
116 |
+
year={2025},
|
117 |
+
url={https://arxiv.org/abs/2502.13595},
|
118 |
+
doi = {10.48550/arXiv.2502.13595},
|
119 |
+
}
|
120 |
+
```
|
121 |
+
|
122 |
+
#### MTEB
|
123 |
+
```bibtex
|
124 |
+
@article{muennighoff2022mteb,
|
125 |
+
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
|
126 |
+
title = {MTEB: Massive Text Embedding Benchmark},
|
127 |
+
publisher = {arXiv},
|
128 |
+
journal={arXiv preprint arXiv:2210.07316},
|
129 |
+
year = {2022}
|
130 |
+
url = {https://arxiv.org/abs/2210.07316},
|
131 |
+
doi = {10.48550/ARXIV.2210.07316},
|
132 |
+
}
|
133 |
+
```
|
134 |
+
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "SentenceTransformer",
|
3 |
+
"__version__": {
|
4 |
+
"sentence_transformers": "5.0.0",
|
5 |
+
"transformers": "4.51.3",
|
6 |
+
"pytorch": "2.1.0+cu121"
|
7 |
+
},
|
8 |
+
"prompts": {
|
9 |
+
"query": "",
|
10 |
+
"document": ""
|
11 |
+
},
|
12 |
+
"default_prompt_name": null,
|
13 |
+
"similarity_fn_name": "cosine"
|
14 |
+
}
|
img/time_vs_MTEB-GGSR.png
ADDED
![]() |
img/time_vs_MTEB-deuV1.png
ADDED
![]() |
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f04f3a9ab3a5073cf11ca19b4b3114f7279c42a710ebdae2d9a69f4e3ffed414
|
3 |
+
size 254787680
|
modules.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.StaticEmbedding"
|
7 |
+
}
|
8 |
+
]
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
train_base.py
ADDED
@@ -0,0 +1,1267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# German base static model for sentence comparisons, RAG & classifications.
|
2 |
+
# Inspired in January 25 by Tom Aarsens: "Train 400x faster Static Embedding Models with Sentence Transformers"
|
3 |
+
# check: https://huggingface.co/blog/static-embeddings#code
|
4 |
+
# and check: https://sbert.net/docs/sentence_transformer/training_overview.html
|
5 |
+
# for training parameters, check also: https://huggingface.co/docs/transformers/en/main_classes/trainer
|
6 |
+
# First test build since May, 25th as I found the time.
|
7 |
+
# The datasets are mainly based upon german and english european table dataset training snippets
|
8 |
+
# Main idea is to use only open licensed material that can also be used commercially.
|
9 |
+
#
|
10 |
+
# This is experimental minimal EN & mainly DE only.
|
11 |
+
#
|
12 |
+
# With local prepared texts building the train/test-split takes about 3 minutes.
|
13 |
+
# Training on a GTX-2070 SUPER 8GB (with prepared training material) needs ~2h.
|
14 |
+
|
15 |
+
from timeit import default_timer as timer
|
16 |
+
import gc
|
17 |
+
import os
|
18 |
+
import random
|
19 |
+
import logging
|
20 |
+
import datasets
|
21 |
+
from datasets import load_dataset, Dataset, DatasetDict, concatenate_datasets
|
22 |
+
from sentence_transformers import (
|
23 |
+
SentenceTransformer,
|
24 |
+
SentenceTransformerTrainer,
|
25 |
+
SentenceTransformerTrainingArguments,
|
26 |
+
SentenceTransformerModelCardData,
|
27 |
+
SimilarityFunction,
|
28 |
+
)
|
29 |
+
from sentence_transformers.losses import MatryoshkaLoss, MultipleNegativesRankingLoss
|
30 |
+
from sentence_transformers.training_args import BatchSamplers, MultiDatasetBatchSamplers
|
31 |
+
from sentence_transformers.models.StaticEmbedding import StaticEmbedding
|
32 |
+
from sentence_transformers.util import paraphrase_mining
|
33 |
+
from sentence_transformers.evaluation import NanoBEIREvaluator
|
34 |
+
|
35 |
+
from transformers import AutoTokenizer # sadly no blingfire
|
36 |
+
|
37 |
+
# as Sentence Transformers uses PyTorch AND TensorFlow - I need to tune it for my system
|
38 |
+
import tensorflow as tf
|
39 |
+
import torch
|
40 |
+
|
41 |
+
## Model Version
|
42 |
+
version = '1'
|
43 |
+
sts_basename = 'sts-mrl-en-de-base'
|
44 |
+
|
45 |
+
## MULTILINGUAL bert-base (original): ~414MB model
|
46 |
+
#tokenizer_model = 'google-bert/bert-base-multilingual-uncased'
|
47 |
+
### follwing are some different tokenizers to play around with - all of them were tested and only 'dbmdz/bert-base-german-uncased' is more effective for the german language by only a size of 243MB.
|
48 |
+
## GERMAN ONLY: ~243MB model
|
49 |
+
tokenizer_model = 'dbmdz/bert-base-german-uncased'
|
50 |
+
## GERMAN ONLY: ~122MB model
|
51 |
+
#tokenizer_model = 'deepset/gelectra-base'
|
52 |
+
## GERMAN ONLY; ~243MB model
|
53 |
+
#tokenizer_model = 'deepset/gbert-base'
|
54 |
+
## MULTILINGUAL roBERTa: ~977MB model
|
55 |
+
#tokenizer_model = 'FacebookAI/xlm-roberta-base'
|
56 |
+
## ModernBert: ~197MB model – as a test for v0.05a
|
57 |
+
#tokenizer_model = 'answerdotai/ModernBERT-base'
|
58 |
+
|
59 |
+
logging.basicConfig(
|
60 |
+
format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO
|
61 |
+
)
|
62 |
+
random.seed(12)
|
63 |
+
|
64 |
+
def load_train_eval_datasets():
|
65 |
+
"""
|
66 |
+
Either load the train and eval datasets from disk or load them from the datasets library & save them to disk.
|
67 |
+
|
68 |
+
Upon saving to disk, we quit() to ensure that the datasets are not loaded into memory before training.
|
69 |
+
|
70 |
+
The order of sets here is not the same as later on in the full training/eval-sets!!!
|
71 |
+
"""
|
72 |
+
try:
|
73 |
+
train_dataset = DatasetDict.load_from_disk("base_datasets/train_dataset")
|
74 |
+
eval_dataset = DatasetDict.load_from_disk("base_datasets/eval_dataset")
|
75 |
+
return train_dataset, eval_dataset
|
76 |
+
except FileNotFoundError:
|
77 |
+
print("No prepared dataset found. Building ...")
|
78 |
+
#
|
79 |
+
# Build the datasets.
|
80 |
+
# we do the biggest thing in the beginning
|
81 |
+
print("Loading mMARCO-distilled-de-hn dataset...")
|
82 |
+
# source: https://huggingface.co/datasets/MarcGrumpyOlejak/mmarco-de-distilled-scored
|
83 |
+
# original: https://huggingface.co/datasets/unicamp-dl/mmarco
|
84 |
+
# git: https://github.com/unicamp-dl/mMARCO
|
85 |
+
# License: Apache-2.0
|
86 |
+
# distilled & filtered: 254660
|
87 |
+
# Original set without Hard Negatives unused
|
88 |
+
#mmarco_de_scored = load_dataset('MarcGrumpyOlejak/mmarco-de-distilled-scored', split="train").filter(lambda _: _['score_sts'] >= 0.26)
|
89 |
+
#mmarco_de_scored = mmarco_de_scored.select_columns(['query', 'positive', 'negative'])
|
90 |
+
#mmarco_de_scored = mmarco_de_scored.train_test_split(test_size=10000, seed=12)
|
91 |
+
#mmarco_de_scored_train_ds: Dataset = mmarco_de_scored["train"]
|
92 |
+
#mmarco_de_scored_eval_ds: Dataset = mmarco_de_scored["test"]
|
93 |
+
#
|
94 |
+
# filtered, split as/with hard negatives and remaining sentences
|
95 |
+
mmarco_de_3hn_ds = load_dataset('parquet', data_files={'mmarco-de-distilled_3hn/3_hard_negatives/*.parquet'}, split="train")
|
96 |
+
mmarco_de_3hn_ds = mmarco_de_3hn_ds.train_test_split(test_size=0.02, seed=12)
|
97 |
+
mmarco_de_3hn_train_dataset: Dataset = mmarco_de_3hn_ds["train"]
|
98 |
+
mmarco_de_3hn_eval_dataset: Dataset = mmarco_de_3hn_ds["test"]
|
99 |
+
#
|
100 |
+
mmarco_de_2hn_ds = load_dataset('parquet', data_files={'mmarco-de-distilled_3hn/2_hard_negatives/*.parquet'}, split="train")
|
101 |
+
mmarco_de_2hn_ds = mmarco_de_2hn_ds.train_test_split(test_size=0.02, seed=12)
|
102 |
+
mmarco_de_2hn_train_dataset: Dataset = mmarco_de_2hn_ds["train"]
|
103 |
+
mmarco_de_2hn_eval_dataset: Dataset = mmarco_de_2hn_ds["test"]
|
104 |
+
#
|
105 |
+
mmarco_de_1hn_ds = load_dataset('parquet', data_files={'mmarco-de-distilled_3hn/1_hard_negatives/*.parquet'}, split="train")
|
106 |
+
mmarco_de_1hn_ds = mmarco_de_1hn_ds.train_test_split(test_size=0.02, seed=12)
|
107 |
+
mmarco_de_1hn_train_dataset: Dataset = mmarco_de_1hn_ds["train"]
|
108 |
+
mmarco_de_1hn_eval_dataset: Dataset = mmarco_de_1hn_ds["test"]
|
109 |
+
#
|
110 |
+
mmarco_de_0hn_ds = load_dataset('parquet', data_files={'mmarco-de-distilled_3hn/0_hard_negatives/*.parquet'}, split="train")
|
111 |
+
mmarco_de_0hn_ds = mmarco_de_0hn_ds.train_test_split(test_size=0.02, seed=12)
|
112 |
+
mmarco_de_0hn_train_dataset: Dataset = mmarco_de_0hn_ds["train"]
|
113 |
+
mmarco_de_0hn_eval_dataset: Dataset = mmarco_de_0hn_ds["test"]
|
114 |
+
print("Loaded mMARCO-distilled-de-hn dataset.")
|
115 |
+
#
|
116 |
+
print("Loading local prepared wikipedia-22-12-de datasets...")
|
117 |
+
# (need to upload the local version to build it)
|
118 |
+
# check: load_dataset('deutsche-telekom/wikipedia-22-12-de-dpr')
|
119 |
+
# License: MIT
|
120 |
+
# Copyright (c) 2023-2024 Philip May, Deutsche Telekom AG
|
121 |
+
# Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License by reviewing the file [LICENSE](https://github.com/telekom/mltb2/blob/main/LICENSE) in the repository.
|
122 |
+
# version without hard negatives not loaded
|
123 |
+
# reversed!!! deactivate hard negatives!
|
124 |
+
name_local = 'wikipedia-22-12-de-scored'
|
125 |
+
wp_2212_de_ds = DatasetDict.load_from_disk(f'{name_local}/{name_local}.hf')
|
126 |
+
wp_2212_de_train_dataset: Dataset = wp_2212_de_ds["train"].select_columns(['question', 'context'])
|
127 |
+
wp_2212_de_eval_dataset: Dataset = wp_2212_de_ds["test"].select_columns(['question', 'context'])
|
128 |
+
#
|
129 |
+
# instead load the hard negative version
|
130 |
+
#name_local = 'wikipedia-22-12-de_hn'
|
131 |
+
#wp_2212_de_train_dataset: Dataset = load_dataset('parquet', data_files={f'{name_local}/3_hard_negatives/train-*.parquet'}, split="train")
|
132 |
+
#wp_2212_de_eval_dataset: Dataset = load_dataset('parquet', data_files={f'{name_local}/3_hard_negatives/test-*.parquet'}, split="train")
|
133 |
+
#wp_2212_de_0_train_dataset: Dataset = load_dataset('parquet', data_files={f'{name_local}/0_hard_negatives/train-*.parquet'}, split="train")
|
134 |
+
#wp_2212_de_0_eval_dataset: Dataset = load_dataset('parquet', data_files={f'{name_local}/0_hard_negatives/test-*.parquet'}, split="train")
|
135 |
+
|
136 |
+
print("Loaded prepared full wikipedia-22-12-de dataset...")
|
137 |
+
#
|
138 |
+
print("Loading swim-ir-monolingual-de-scored dataset...")
|
139 |
+
# source: https://huggingface.co/datasets/MarcGrumpyOlejak/swim-ir-monolingual-de-scored
|
140 |
+
# original: https://huggingface.co/datasets/nthakur/swim-ir-monolingual
|
141 |
+
# entries: ~447000
|
142 |
+
# filtered: 356552
|
143 |
+
# combined: 713104
|
144 |
+
# License: CC-BY-SA-4.0
|
145 |
+
# Original set without Hard Negatives unsed
|
146 |
+
#swim_ir_de_ds = load_dataset("MarcGrumpyOlejak/swim-ir-monolingual-de-scored", split="train").filter(lambda _: _['score_sts'] >= 0.26 and _['score_sts'] < 0.99 and _['query'] != '')
|
147 |
+
#swim_ir_de_key_ds = swim_ir_de_ds.select_columns(['text', 'title'])
|
148 |
+
#swim_ir_de_key_ds = swim_ir_de_key_ds.rename_columns({'text': 'sentence1', 'title': 'sentence2'})
|
149 |
+
#swim_ir_de_ds = swim_ir_de_ds.select_columns(['query', 'text'])
|
150 |
+
#swim_ir_de_ds = swim_ir_de_ds.rename_columns({'query': 'sentence1', 'text': 'sentence2'})
|
151 |
+
#swim_ir_de_ds = concatenate_datasets([swim_ir_de_ds, swim_ir_de_key_ds])
|
152 |
+
#swim_ir_de_ds = swim_ir_de_ds.train_test_split(test_size=10000, seed=12)
|
153 |
+
#swim_ir_de_train_dataset: Dataset = swim_ir_de_ds["train"]
|
154 |
+
#swim_ir_de_eval_dataset: Dataset = swim_ir_de_ds["test"]
|
155 |
+
#
|
156 |
+
# filtered, split and with hard negatives and remaining sentences
|
157 |
+
swim_ir_de_ds = load_dataset('parquet', data_files={'swim-ir-monolingual-de_3hn/0_hard_negatives/*.parquet'}, split="train")
|
158 |
+
swim_ir_de_ds = swim_ir_de_ds.train_test_split(test_size=0.02, seed=12)
|
159 |
+
swim_ir_de_train_dataset: Dataset = swim_ir_de_ds["train"]
|
160 |
+
swim_ir_de_eval_dataset: Dataset = swim_ir_de_ds["test"]
|
161 |
+
swim_ir_de_3hn_ds = load_dataset('parquet', data_files={'swim-ir-monolingual-de_3hn/3_hard_negatives/*.parquet'}, split="train")
|
162 |
+
swim_ir_de_3hn_ds = swim_ir_de_3hn_ds.train_test_split(test_size=0.02, seed=12)
|
163 |
+
swim_ir_de_3hn_train_dataset: Dataset = swim_ir_de_3hn_ds["train"]
|
164 |
+
swim_ir_de_3hn_eval_dataset: Dataset = swim_ir_de_3hn_ds["test"]
|
165 |
+
#
|
166 |
+
swim_ir_de_title_ds = load_dataset('parquet', data_files={'swim-ir-monolingual-titles-de_3hn/0_hard_negatives/*.parquet'}, split="train")
|
167 |
+
swim_ir_de_title_3hn_ds = load_dataset('parquet', data_files={'swim-ir-monolingual-titles-de_3hn/3_hard_negatives/*.parquet'}, split="train")
|
168 |
+
swim_ir_de_title_ds = swim_ir_de_title_ds.train_test_split(test_size=0.02, seed=12)
|
169 |
+
swim_ir_de_title_3hn_ds = swim_ir_de_title_3hn_ds.train_test_split(test_size=0.02, seed=12)
|
170 |
+
swim_ir_de_title_train_dataset: Dataset = swim_ir_de_title_ds['train']
|
171 |
+
swim_ir_de_title_eval_dataset: Dataset = swim_ir_de_title_ds["test"]
|
172 |
+
swim_ir_de_title_3hn_train_dataset: Dataset = swim_ir_de_title_3hn_ds['train']
|
173 |
+
swim_ir_de_title_3hn_eval_dataset: Dataset = swim_ir_de_title_3hn_ds['test']
|
174 |
+
print("Loaded swim-ir-monolingual-de-scored dataset.")
|
175 |
+
#
|
176 |
+
print("Loading avemio_triples dataset...")
|
177 |
+
# source: https://huggingface.co/datasets/avemio/German-RAG-EMBEDDING-TRIPLES-HESSIAN-AI
|
178 |
+
# entries: 294234
|
179 |
+
# License: Apache-2.0
|
180 |
+
avemio_triples_dataset = load_dataset("avemio/German-RAG-EMBEDDING-TRIPLES-HESSIAN-AI", split="train")
|
181 |
+
avemio_triples_dataset_dict = avemio_triples_dataset.train_test_split(test_size=10000, seed=12)
|
182 |
+
avemio_triples_train_dataset: Dataset = avemio_triples_dataset_dict["train"]
|
183 |
+
avemio_triples_eval_dataset: Dataset = avemio_triples_dataset_dict["test"]
|
184 |
+
print("Loaded avemio_triples dataset.")
|
185 |
+
#
|
186 |
+
print("Loading avemio_pairs-hn dataset...")
|
187 |
+
# source: https://huggingface.co/datasets/avemio/German-RAG-EMBEDDING-PAIRS-HESSIAN-AI
|
188 |
+
# entries: 1036940
|
189 |
+
# License: Apache-2.0
|
190 |
+
# Original dataset unused
|
191 |
+
#avemio_pairs_dataset = load_dataset("avemio/German-RAG-EMBEDDING-PAIRS-HESSIAN-AI", split="train")
|
192 |
+
#avemio_pairs_dataset_dict = avemio_pairs_dataset.train_test_split(test_size=10000, seed=12)
|
193 |
+
#avemio_pairs_train_dataset: Dataset = avemio_pairs_dataset_dict["train"]
|
194 |
+
#avemio_pairs_eval_dataset: Dataset = avemio_pairs_dataset_dict["test"]
|
195 |
+
#
|
196 |
+
# filtered, split and with hard negatives and remaining sentences
|
197 |
+
avemio_pairs_3hn_ds = load_dataset('parquet', data_files={'German-RAG-EMBEDDING-PAIRS-HESSIAN-AI-3hn-350_3hn/3_hard_negatives/*.parquet', 'German-RAG-EMBEDDING-PAIRS-HESSIAN-AI-3hn-600_3hn/3_hard_negatives/*.parquet', 'German-RAG-EMBEDDING-PAIRS-HESSIAN-AI-3hn-600plus_3hn/3_hard_negatives/*.parquet',}, split="train")
|
198 |
+
avemio_pairs_3hn_ds = avemio_pairs_3hn_ds.train_test_split(test_size=10000, seed=12)
|
199 |
+
avemio_pairs_3hn_train_ds: Dataset = avemio_pairs_3hn_ds["train"]
|
200 |
+
avemio_pairs_3hn_eval_ds: Dataset = avemio_pairs_3hn_ds["test"]
|
201 |
+
del avemio_pairs_3hn_ds
|
202 |
+
#
|
203 |
+
avemio_pairs_0hn_ds = load_dataset('parquet', data_files={'German-RAG-EMBEDDING-PAIRS-HESSIAN-AI-3hn-350_3hn/0_hard_negatives/*.parquet', 'German-RAG-EMBEDDING-PAIRS-HESSIAN-AI-3hn-600_3hn/0_hard_negatives/*.parquet', 'German-RAG-EMBEDDING-PAIRS-HESSIAN-AI-3hn-600plus_3hn/0_hard_negatives/*.parquet',}, split="train")
|
204 |
+
avemio_pairs_0hn_ds = avemio_pairs_0hn_ds.train_test_split(test_size=10000, seed=12)
|
205 |
+
avemio_pairs_0hn_train_ds: Dataset = avemio_pairs_0hn_ds["train"]
|
206 |
+
avemio_pairs_0hn_eval_ds: Dataset = avemio_pairs_0hn_ds["test"]
|
207 |
+
del avemio_pairs_0hn_ds
|
208 |
+
print("Loaded avemio_pairs-hn dataset.")
|
209 |
+
#
|
210 |
+
print("Loading nq_german-hn dataset...")
|
211 |
+
# source: https://huggingface.co/datasets/oliverguhr/natural-questions-german
|
212 |
+
# entries: 100231
|
213 |
+
# original source: https://ai.google.com/research/NaturalQuestions
|
214 |
+
# License: cc-by-sa-3.0
|
215 |
+
# without hard negatives but unused
|
216 |
+
#nq_german_dataset = load_dataset("oliverguhr/natural-questions-german", split="train").select_columns(['query_de', 'answer_de'])
|
217 |
+
#nq_german_dataset_dict = nq_german_dataset.train_test_split(test_size=0.02, seed=12)
|
218 |
+
#nq_german_train_dataset: Dataset = nq_german_dataset_dict["train"]
|
219 |
+
#nq_german_eval_dataset: Dataset = nq_german_dataset_dict["test"]
|
220 |
+
#
|
221 |
+
# filtered, split and with hard negatives and remaining sentences
|
222 |
+
nq_german_en_de_a_3hn_ds = load_dataset('parquet', data_files={'natural-questions-german-en_de-a-sts_3hn/3_hard_negatives/*.parquet'}, split="train")
|
223 |
+
nq_german_en_de_a_3hn_ds = nq_german_en_de_a_3hn_ds.train_test_split(test_size=0.02, seed=12)
|
224 |
+
nq_german_en_de_a_3hn_train_ds: Dataset = nq_german_en_de_a_3hn_ds['train']
|
225 |
+
nq_german_en_de_a_3hn_eval_ds: Dataset = nq_german_en_de_a_3hn_ds['test']
|
226 |
+
#
|
227 |
+
nq_german_en_de_3hn_ds = load_dataset('parquet', data_files={'natural-questions-german-en_de-sts_3hn/3_hard_negatives/*.parquet'}, split="train")
|
228 |
+
nq_german_en_de_3hn_ds = nq_german_en_de_3hn_ds.train_test_split(test_size=0.02, seed=12)
|
229 |
+
nq_german_en_de_3hn_train_ds: Dataset = nq_german_en_de_3hn_ds['train']
|
230 |
+
nq_german_en_de_3hn_eval_ds: Dataset = nq_german_en_de_3hn_ds['test']
|
231 |
+
#
|
232 |
+
nq_german_3hn_ds = load_dataset('parquet', data_files={'natural-questions-german-sts_3hn/3_hard_negatives/*.parquet'}, split="train")
|
233 |
+
nq_german_3hn_ds = nq_german_3hn_ds.train_test_split(test_size=0.02, seed=12)
|
234 |
+
nq_german_3hn_train_ds: Dataset = nq_german_3hn_ds['train']
|
235 |
+
nq_german_3hn_eval_ds: Dataset = nq_german_3hn_ds['test']
|
236 |
+
#
|
237 |
+
nq_german_1hn_ds = load_dataset('parquet', data_files={'natural-questions-german-sts_3hn/1_hard_negatives/*.parquet'}, split="train")
|
238 |
+
nq_german_1hn_ds = nq_german_1hn_ds.train_test_split(test_size=0.02, seed=12)
|
239 |
+
nq_german_1hn_train_ds: Dataset = nq_german_1hn_ds['train']
|
240 |
+
nq_german_1hn_eval_ds: Dataset = nq_german_1hn_ds['test']
|
241 |
+
print("Loaded nq_german-hn dataset.")
|
242 |
+
#
|
243 |
+
print("Loading german-oasst1-qa-format-scored dataset...")
|
244 |
+
# source: https://huggingface.co/datasets/MarcGrumpyOlejak/german-oasst1-qa-format-scored
|
245 |
+
# original: https://huggingface.co/datasets/AgentWaller/german-oasst1-qa-format
|
246 |
+
# entries: ~9800
|
247 |
+
# License: apache-2.0
|
248 |
+
#german_oasst1 = load_dataset("MarcGrumpyOlejak/german-oasst1-qa-format-scored").filter(lambda _: _['score_sts'] >= 0.16 and _['score_sts'] < 0.99)
|
249 |
+
#german_oasst1_train_dataset: Dataset = german_oasst1["train"].select_columns(['input', 'output'])
|
250 |
+
#german_oasst1_eval_dataset: Dataset = german_oasst1['validation'].select_columns(['input', 'output'])
|
251 |
+
#
|
252 |
+
name_local = 'german-oasst1-qa-format-hn'
|
253 |
+
german_oasst1_hn_train_dataset: Dataset = load_dataset('parquet', data_files={f'{name_local}/3_hard_negatives/train-*.parquet'}, split="train")
|
254 |
+
german_oasst1_hn_eval_dataset: Dataset = load_dataset('parquet', data_files={f'{name_local}/3_hard_negatives/test-*.parquet'}, split="train")
|
255 |
+
print("Loaded german-oasst1-qa-format-scored dataset.")
|
256 |
+
#
|
257 |
+
print("Loading germanrag-scored dataset...")
|
258 |
+
# source: https://huggingface.co/datasets/MarcGrumpyOlejak/germanrag-scored
|
259 |
+
# german original: https://huggingface.co/datasets/DiscoResearch/germanrag
|
260 |
+
# original: https://huggingface.co/datasets/deepset/germandpr
|
261 |
+
# entries: ~3300
|
262 |
+
# filtered & modified: 4556
|
263 |
+
# License: cc-by-4.0
|
264 |
+
# Hint: one could 'refilter' the 'contexts' down to the selected 'answer' in 'positive_ctx_idx' and use the other answers as hard negatives.
|
265 |
+
def list_to_string(_):
|
266 |
+
_['contexts'] = ' '.join(_['contexts'])
|
267 |
+
return _
|
268 |
+
germanrag_short = load_dataset("MarcGrumpyOlejak/germanrag-scored", split='train').filter(lambda _: _['score_sts'] >= 0.16 and _['score_sts'] < 0.98 and _['positive_ctx_idx'] != -1)
|
269 |
+
germanrag_context = germanrag_short.select_columns(['answer', 'contexts'])
|
270 |
+
germanrag_context = germanrag_context.map(list_to_string)
|
271 |
+
germanrag_context = germanrag_context.rename_columns({'answer': 'sentence1', 'contexts': 'sentence2'})
|
272 |
+
germanrag_short = germanrag_short.select_columns(['question', 'answer'])
|
273 |
+
germanrag_short = germanrag_short.rename_columns({'question': 'sentence1', 'answer': 'sentence2'})
|
274 |
+
germanrag_short = concatenate_datasets([germanrag_short, germanrag_context])
|
275 |
+
germanrag_short = germanrag_short.train_test_split(test_size=0.02, seed=12)
|
276 |
+
germanrag_short_train_dataset: Dataset = germanrag_short["train"]
|
277 |
+
germanrag_short_eval_dataset: Dataset = germanrag_short["test"]
|
278 |
+
print("Loaded germanrag dataset.")
|
279 |
+
#
|
280 |
+
print("Loading slimorca_dedup_german_experimental-scored dataset...")
|
281 |
+
# source: https://huggingface.co/datasets/MarcGrumpyOlejak/slimorca_dedup_german_experimental-scored
|
282 |
+
# german original: https://huggingface.co/datasets/jphme/slimorca_dedup_german_experimental
|
283 |
+
# original: https://huggingface.co/datasets/Open-Orca/SlimOrca-Dedup
|
284 |
+
# entries: ~322000
|
285 |
+
# filtered: 305406
|
286 |
+
# License: MIT
|
287 |
+
# Original set without Hard Negatives unused
|
288 |
+
#slimorca_dedup_german = load_dataset("MarcGrumpyOlejak/slimorca_dedup_german_experimental-scored").filter(lambda _: _['score_sts'] >= 0.16 and _['score_sts'] < 0.98)
|
289 |
+
#slimorca_dedup_german = slimorca_dedup_german.select_columns(['instruction', 'response'])
|
290 |
+
#slimorca_dedup_german = slimorca_dedup_german['train'].train_test_split(test_size=0.02, seed=12)
|
291 |
+
#slimorca_dedup_german_train_dataset: Dataset = slimorca_dedup_german["train"]
|
292 |
+
#slimorca_dedup_german_eval_dataset: Dataset = slimorca_dedup_german["test"]
|
293 |
+
#
|
294 |
+
# FILTERED, SPLIT AND WITH HARD NEGATIVES
|
295 |
+
slimorca_dedup_3hn_ds = load_dataset('parquet', data_files={'slimorca_dedup_german_experimental-sts-negatives_3hn/3_hard_negatives/*.parquet'}, split="train")
|
296 |
+
slimorca_dedup_3hn_ds = slimorca_dedup_3hn_ds.train_test_split(test_size=0.02, seed=12)
|
297 |
+
slimorca_dedup_3hn_train_ds: Dataset = slimorca_dedup_3hn_ds['train']
|
298 |
+
slimorca_dedup_3hn_eval_ds: Dataset = slimorca_dedup_3hn_ds['test']
|
299 |
+
#
|
300 |
+
slimorca_dedup_2hn_ds = load_dataset('parquet', data_files={'slimorca_dedup_german_experimental-sts-negatives_3hn/2_hard_negatives/*.parquet'}, split="train")
|
301 |
+
slimorca_dedup_2hn_ds = slimorca_dedup_2hn_ds.train_test_split(test_size=0.02, seed=12)
|
302 |
+
slimorca_dedup_2hn_train_ds: Dataset = slimorca_dedup_2hn_ds['train']
|
303 |
+
slimorca_dedup_2hn_eval_ds: Dataset = slimorca_dedup_2hn_ds['test']
|
304 |
+
#
|
305 |
+
slimorca_dedup_1hn_ds = load_dataset('parquet', data_files={'slimorca_dedup_german_experimental-sts-negatives_3hn/1_hard_negatives/*.parquet'}, split="train")
|
306 |
+
slimorca_dedup_1hn_ds = slimorca_dedup_1hn_ds.train_test_split(test_size=0.02, seed=12)
|
307 |
+
slimorca_dedup_1hn_train_ds: Dataset = slimorca_dedup_1hn_ds['train']
|
308 |
+
slimorca_dedup_1hn_eval_ds: Dataset = slimorca_dedup_1hn_ds['test']
|
309 |
+
#
|
310 |
+
slimorca_dedup_0hn_ds = load_dataset('parquet', data_files={'slimorca_dedup_german_experimental-sts-negatives_3hn/0_hard_negatives/*.parquet'}, split="train")
|
311 |
+
slimorca_dedup_0hn_ds = slimorca_dedup_0hn_ds.train_test_split(test_size=0.02, seed=12)
|
312 |
+
slimorca_dedup_0hn_train_ds: Dataset = slimorca_dedup_0hn_ds['train']
|
313 |
+
slimorca_dedup_0hn_eval_ds: Dataset = slimorca_dedup_0hn_ds['test']
|
314 |
+
print("Loaded slimorca_dedup_german_experimental-scored dataset.")
|
315 |
+
#
|
316 |
+
print("Loading gpt-4-self-instruct-german-scored dataset...")
|
317 |
+
# source: https://huggingface.co/datasets/MarcGrumpyOlejak/gpt-4-self-instruct-german-scored
|
318 |
+
# original: https://huggingface.co/datasets/CausalLM/GPT-4-Self-Instruct-German
|
319 |
+
# entries: ~10000
|
320 |
+
# filtered: 9776
|
321 |
+
# License: CC-BY-4.0
|
322 |
+
#german_gpt4 = load_dataset("MarcGrumpyOlejak/gpt-4-self-instruct-german-scored").filter(lambda _: _['score_sts'] >= 0.16 and _['score_sts'] < 0.98).select_columns(['instruction', 'output'])
|
323 |
+
#german_gpt4 = german_gpt4['train'].train_test_split(test_size=0.02, seed=12)
|
324 |
+
#german_gpt4_train_dataset: Dataset = german_gpt4["train"]
|
325 |
+
#german_gpt4_eval_dataset: Dataset = german_gpt4["test"]
|
326 |
+
#
|
327 |
+
name_local = 'gpt-4-self-instruct-german-hn'
|
328 |
+
german_gpt4 = load_dataset('parquet', data_files={f'{name_local}/3_hard_negatives/train-*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
329 |
+
german_gpt4_3hn_train_dataset: Dataset = german_gpt4["train"]
|
330 |
+
german_gpt4_3hn_eval_dataset: Dataset = german_gpt4["test"]
|
331 |
+
print("Loaded GPT-4-Self-Instruct-German dataset.")
|
332 |
+
#
|
333 |
+
print("Loading ultradistil-intel-orca-dpo-de-scored dataset...")
|
334 |
+
# source: https://huggingface.co/datasets/MarcGrumpyOlejak/ultradistil-intel-orca-dpo-de-scored
|
335 |
+
# original: https://huggingface.co/datasets/aari1995/ultradistil-intel-orca-dpo-de
|
336 |
+
# entries: ~6000
|
337 |
+
# filtered: ~5547
|
338 |
+
# License: apache-2.0
|
339 |
+
german_orca_dpo_ds = load_dataset("MarcGrumpyOlejak/ultradistil-intel-orca-dpo-de-scored").filter(lambda _: _['score_sts'] >= 0.16 and _['score_sts'] < 0.98)
|
340 |
+
german_orca_dpo_ds = german_orca_dpo_ds.select_columns(['input', 'chosen', 'rejected'])
|
341 |
+
german_orca_dpo_ds = german_orca_dpo_ds['train'].train_test_split(test_size=0.02, seed=12)
|
342 |
+
german_orca_dpo_train_dataset: Dataset = german_orca_dpo_ds["train"]
|
343 |
+
german_orca_dpo_eval_dataset: Dataset = german_orca_dpo_ds["test"]
|
344 |
+
print("Loaded ultradistil-intel-orca-dpo-de-scored dataset.")
|
345 |
+
#
|
346 |
+
#scored version of alpaca-gpt4_de-scored
|
347 |
+
print("Loading alpaca-gpt4_de-scored dataset...")
|
348 |
+
# source: https://huggingface.co/datasets/MarcGrumpyOlejak/alpaca-gpt4_de-scored
|
349 |
+
# german original: https://huggingface.co/datasets/mayflowergmbh/alpaca-gpt4_de
|
350 |
+
# original: https://huggingface.co/datasets/FreedomIntelligence/alpaca-gpt4-deutsch
|
351 |
+
# entries: ~50000
|
352 |
+
# filtered ~44845
|
353 |
+
# License: apache-2.0
|
354 |
+
# Original unused
|
355 |
+
#alpaca_gpt4_de_ds = load_dataset("MarcGrumpyOlejak/alpaca-gpt4_de-scored").filter(lambda _: _['score_sts'] >= 0.16 and _['score_sts'] < 0.94)
|
356 |
+
#alpaca_gpt4_de_ds = alpaca_gpt4_de_ds.select_columns(['instruction', 'output'])
|
357 |
+
#alpaca_gpt4_de_ds = alpaca_gpt4_de_ds['train'].train_test_split(test_size=0.02, seed=12)
|
358 |
+
#alpaca_gpt4_de_train_dataset: Dataset = alpaca_gpt4_de_ds["train"]
|
359 |
+
#alpaca_gpt4_de_eval_dataset: Dataset = alpaca_gpt4_de_ds["test"]
|
360 |
+
# filtered and hard negatives
|
361 |
+
alpaca_gpt4_de_3hn_ds = load_dataset('parquet', data_files={'alpaca-gpt4_de_3hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
362 |
+
alpaca_gpt4_de_3hn_train_dataset: Dataset = alpaca_gpt4_de_3hn_ds['train']
|
363 |
+
alpaca_gpt4_de_3hn_eval_dataset: Dataset = alpaca_gpt4_de_3hn_ds['test']
|
364 |
+
alpaca_gpt4_de_0hn_ds = load_dataset('parquet', data_files={'alpaca-gpt4_de_3hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
365 |
+
alpaca_gpt4_de_0hn_train_dataset: Dataset = alpaca_gpt4_de_0hn_ds['train']
|
366 |
+
alpaca_gpt4_de_0hn_eval_dataset: Dataset = alpaca_gpt4_de_0hn_ds['test']
|
367 |
+
print("Loaded alpaca-gpt4_de dataset.")
|
368 |
+
#
|
369 |
+
print("Loading DOLLY-15k (en-de) dataset...")
|
370 |
+
# source: https://huggingface.co/datasets/argilla/databricks-dolly-15k-curated-multilingual
|
371 |
+
# entries: ~15000
|
372 |
+
# License: cc-by-sa-3.0
|
373 |
+
# Original combined merged dataset unsused
|
374 |
+
#db_dolly = load_dataset("argilla/databricks-dolly-15k-curated-multilingual", split="de")
|
375 |
+
#db_dolly_en_de_inststruction = db_dolly.select_columns(['instruction_original_en', 'instruction']).filter(lambda _: _['instruction_original_en'] != "" and _['instruction'] != '')
|
376 |
+
#db_dolly_en_de_inststruction = db_dolly_en_de_inststruction.rename_columns({'instruction_original_en': 'sentence1', 'instruction': 'sentence2'})
|
377 |
+
#db_dolly_en_de_context = db_dolly.select_columns(['context_original_en', 'context']).filter(lambda _: _['context_original_en'] != "" and _['context'] != '')
|
378 |
+
#db_dolly_en_de_context = db_dolly_en_de_context.rename_columns({'context_original_en': 'sentence1', 'context': 'sentence2'})
|
379 |
+
#db_dolly_en_de_response = db_dolly.select_columns(['response_original_en', 'response']).filter(lambda _: _['response_original_en'] != "" and _['response'] != '')
|
380 |
+
#db_dolly_en_de_response = db_dolly_en_de_response.rename_columns({'response_original_en': 'sentence1', 'response': 'sentence2'})
|
381 |
+
#db_dolly_qa_de = db_dolly.select_columns(['instruction', 'response']).filter(lambda _: _['instruction'] != "" and _['response'] != '')
|
382 |
+
#db_dolly_qa_de = db_dolly_qa_de.rename_columns({'instruction': 'sentence1', 'response': 'sentence2'})
|
383 |
+
#db_dolly_qcontext_de = db_dolly.select_columns(['response', 'context']).filter(lambda _: _['response'] != "" and _['context'] != '')
|
384 |
+
#db_dolly_qcontext_de = db_dolly_qcontext_de.rename_columns({'response': 'sentence1', 'context': 'sentence2'})
|
385 |
+
#db_dolly_contextq_de = db_dolly.select_columns(['context', 'instruction']).filter(lambda _: _['context'] != "" and _['instruction'] != '')
|
386 |
+
#db_dolly_contextq_de = db_dolly_contextq_de.rename_columns({'context': 'sentence1', 'instruction': 'sentence2'})
|
387 |
+
# concat all small tables
|
388 |
+
#db_dolly = concatenate_datasets([db_dolly_en_de_inststruction, db_dolly_en_de_context, db_dolly_en_de_response, db_dolly_qa_de, db_dolly_qcontext_de, db_dolly_contextq_de])
|
389 |
+
#db_dolly_ds = db_dolly.train_test_split(test_size=0.02, seed=12)
|
390 |
+
#db_dolly_train_dataset: Dataset = db_dolly_ds["train"]
|
391 |
+
#db_dolly_eval_dataset: Dataset = db_dolly_ds["test"]
|
392 |
+
#
|
393 |
+
# hard negative versions and remaining sentences
|
394 |
+
dolly_context_de_3hn_ds = load_dataset('parquet', data_files={'databricks-dolly-15k-curated-de/context-de-hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
395 |
+
dolly_context_de_3hn_train_ds: Dataset = dolly_context_de_3hn_ds['train']
|
396 |
+
dolly_context_de_3hn_eval_ds: Dataset = dolly_context_de_3hn_ds['test']
|
397 |
+
dolly_context_de_0hn_ds = load_dataset('parquet', data_files={'databricks-dolly-15k-curated-de/context-de-hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
398 |
+
dolly_context_de_0hn_train_ds: Dataset = dolly_context_de_0hn_ds['train']
|
399 |
+
dolly_context_de_0hn_eval_ds: Dataset = dolly_context_de_0hn_ds['test']
|
400 |
+
dolly_context_ende_3hn_ds = load_dataset('parquet', data_files={'databricks-dolly-15k-curated-de/context-en_de-hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
401 |
+
dolly_context_ende_3hn_train_ds: Dataset = dolly_context_ende_3hn_ds['train']
|
402 |
+
dolly_context_ende_3hn_eval_ds: Dataset = dolly_context_ende_3hn_ds['test']
|
403 |
+
# the next set is empty :D
|
404 |
+
#dolly_context_ende_0hn_ds = load_dataset('parquet', data_files={'databricks-dolly-15k-curated-de/context-en_de-hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
405 |
+
dolly_instructions_de_3hn_ds = load_dataset('parquet', data_files={'databricks-dolly-15k-curated-de/instructions-de-hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
406 |
+
dolly_instructions_de_3hn_train_ds: Dataset = dolly_instructions_de_3hn_ds['train']
|
407 |
+
dolly_instructions_de_3hn_eval_ds: Dataset = dolly_instructions_de_3hn_ds['test']
|
408 |
+
dolly_instructions_de_0hn_ds = load_dataset('parquet', data_files={'databricks-dolly-15k-curated-de/instructions-de-hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
409 |
+
dolly_instructions_de_0hn_train_ds: Dataset = dolly_instructions_de_0hn_ds['train']
|
410 |
+
dolly_instructions_de_0hn_eval_ds: Dataset = dolly_instructions_de_0hn_ds['test']
|
411 |
+
dolly_instructions_ende_3hn_ds = load_dataset('parquet', data_files={'databricks-dolly-15k-curated-de/instructions-en_de-hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
412 |
+
dolly_instructions_ende_3hn_train_ds: Dataset = dolly_instructions_ende_3hn_ds['train']
|
413 |
+
dolly_instructions_ende_3hn_eval_ds: Dataset = dolly_instructions_ende_3hn_ds['test']
|
414 |
+
dolly_instructions_ende_0hn_ds = load_dataset('parquet', data_files={'databricks-dolly-15k-curated-de/instructions-en_de-hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
415 |
+
dolly_instructions_ende_0hn_train_ds: Dataset = dolly_instructions_ende_0hn_ds['train']
|
416 |
+
dolly_instructions_ende_0hn_eval_ds: Dataset = dolly_instructions_ende_0hn_ds['test']
|
417 |
+
dolly_responses_de_3hn_ds = load_dataset('parquet', data_files={'databricks-dolly-15k-curated-de/response-de-hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
418 |
+
dolly_responses_de_3hn_train_ds: Dataset = dolly_responses_de_3hn_ds['train']
|
419 |
+
dolly_responses_de_3hn_eval_ds: Dataset = dolly_responses_de_3hn_ds['test']
|
420 |
+
dolly_responses_de_0hn_ds = load_dataset('parquet', data_files={'databricks-dolly-15k-curated-de/response-de-hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
421 |
+
dolly_responses_de_0hn_train_ds: Dataset = dolly_responses_de_0hn_ds['train']
|
422 |
+
dolly_responses_de_0hn_eval_ds: Dataset = dolly_responses_de_0hn_ds['test']
|
423 |
+
dolly_responses_ende_3hn_ds = load_dataset('parquet', data_files={'databricks-dolly-15k-curated-de/response-en_de-hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
424 |
+
dolly_responses_ende_3hn_train_ds: Dataset = dolly_responses_ende_3hn_ds['train']
|
425 |
+
dolly_responses_ende_3hn_eval_ds: Dataset = dolly_responses_ende_3hn_ds['test']
|
426 |
+
dolly_responses_ende_0hn_ds = load_dataset('parquet', data_files={'databricks-dolly-15k-curated-de/response-en_de-hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
427 |
+
dolly_responses_ende_0hn_train_ds: Dataset = dolly_responses_ende_0hn_ds['train']
|
428 |
+
dolly_responses_ende_0hn_eval_ds: Dataset = dolly_responses_ende_0hn_ds['test']
|
429 |
+
print("Loaded DOLLY-15k (en-de) dataset.")
|
430 |
+
#
|
431 |
+
print("Loading 'saf-legal_domain_german' dataset...")
|
432 |
+
# source: https://huggingface.co/datasets/Short-Answer-Feedback/saf_legal_domain_german
|
433 |
+
# License: CC-BY-4.0
|
434 |
+
# entries: ~1600
|
435 |
+
# filtered: ~1100 (score >= 0.75) and recombined
|
436 |
+
saf_legal_de_train = load_dataset("Short-Answer-Feedback/saf_legal_domain_german", split="train").filter(lambda _: _['score'] >= 0.75)
|
437 |
+
saf_legal_de_qa_train = saf_legal_de_train.select_columns(['question', 'provided_answer']).rename_columns({'question': 'sentence1', 'provided_answer': 'sentence2'})
|
438 |
+
saf_legal_de_a_train = saf_legal_de_train.select_columns(['provided_answer', 'reference_answer']).rename_columns({'provided_answer': 'sentence1', 'reference_answer': 'sentence2'})
|
439 |
+
saf_legal_de_train_ds: Dataset = concatenate_datasets([saf_legal_de_qa_train, saf_legal_de_a_train])
|
440 |
+
# Loading & Preparing validation set
|
441 |
+
saf_legal_de_eval = load_dataset("Short-Answer-Feedback/saf_legal_domain_german", split="validation").filter(lambda _: _['score'] >= 0.75)
|
442 |
+
saf_legal_de_qa_eval = saf_legal_de_eval.select_columns(['question', 'provided_answer']).rename_columns({'question': 'sentence1', 'provided_answer': 'sentence2'})
|
443 |
+
saf_legal_de_a_eval = saf_legal_de_eval.select_columns(['provided_answer', 'reference_answer']).rename_columns({'provided_answer': 'sentence1', 'reference_answer': 'sentence2'})
|
444 |
+
saf_legal_de_eval_ds: Dataset = concatenate_datasets([saf_legal_de_qa_eval, saf_legal_de_a_eval])
|
445 |
+
print("Loaded 'saf-legal_domain_german' dataset.")
|
446 |
+
#
|
447 |
+
print("Loading GLS dataset...")
|
448 |
+
# German Legal Sentences (GLS)
|
449 |
+
# source: https://huggingface.co/datasets/lavis-nlp/german_legal_sentences
|
450 |
+
# https://lavis-nlp.github.io/german_legal_sentences/
|
451 |
+
# uses "custom code": https://huggingface.co/datasets/lavis-nlp/german_legal_sentences/blob/main/german_legal_sentences.py
|
452 |
+
# License: MIT - see https://github.com/lavis-nlp/GerDaLIR
|
453 |
+
# Original License: https://github.com/openlegaldata/oldp#MIT-1-ov-file
|
454 |
+
# interesting fields: query.text, related.text
|
455 |
+
# entries: 1404271
|
456 |
+
#
|
457 |
+
# Original unused
|
458 |
+
#gls_pairs_dataset_dict = load_dataset("lavis-nlp/german_legal_sentences", "pairs").select_columns(['query.text', 'related.text'])
|
459 |
+
#gls_pairs_train_dataset: Dataset = gls_pairs_dataset_dict["train"]
|
460 |
+
#gls_pairs_eval_dataset: Dataset = gls_pairs_dataset_dict["validation"]
|
461 |
+
#
|
462 |
+
# Distilled and hard mined negatives
|
463 |
+
gls_3hn = load_dataset('parquet', data_files={'german_legal_sentences_dist_3hn/3_hard_negatives/*.parquet'})['train'].train_test_split(test_size=0.02, seed=12)
|
464 |
+
gls_3hn_train_dataset: Dataset = gls_3hn['train']
|
465 |
+
gls_3hn_eval_dataset: Dataset = gls_3hn['test']
|
466 |
+
gls_2hn = load_dataset('parquet', data_files={'german_legal_sentences_dist_3hn/2_hard_negatives/*.parquet'})['train'].train_test_split(test_size=0.02, seed=12)
|
467 |
+
gls_2hn_train_dataset: Dataset = gls_2hn['train']
|
468 |
+
gls_2hn_eval_dataset: Dataset = gls_2hn['test']
|
469 |
+
gls_1hn = load_dataset('parquet', data_files={'german_legal_sentences_dist_3hn/1_hard_negatives/*.parquet'})['train'].train_test_split(test_size=0.02, seed=12)
|
470 |
+
gls_1hn_train_dataset: Dataset = gls_1hn['train']
|
471 |
+
gls_1hn_eval_dataset: Dataset = gls_1hn['test']
|
472 |
+
gls_0hn = load_dataset('parquet', data_files={'german_legal_sentences_dist_3hn/0_hard_negatives/*.parquet'})['train'].train_test_split(test_size=0.02, seed=12)
|
473 |
+
gls_0hn_train_dataset: Dataset = gls_0hn['train']
|
474 |
+
gls_0hn_eval_dataset: Dataset = gls_0hn['test']
|
475 |
+
print("Loaded GLS dataset.")
|
476 |
+
#
|
477 |
+
print("Loading europarl EN-DE dataset...")
|
478 |
+
# source: https://huggingface.co/datasets/sentence-transformers/parallel-sentences-europarl
|
479 |
+
# original: https://opus.nlpl.eu/Europarl/corpus/version/Europarl
|
480 |
+
# Info: https://opus.nlpl.eu/legacy/LREC2012.txt
|
481 |
+
# entries: ~1.9m
|
482 |
+
#europarl_dataset = load_dataset("sentence-transformers/parallel-sentences-europarl", "en-de", split="train")
|
483 |
+
#europarl_dataset_dict = europarl_dataset.train_test_split(test_size=10000, seed=12)
|
484 |
+
#europarl_train_dataset: Dataset = europarl_dataset_dict["train"]
|
485 |
+
#europarl_eval_dataset: Dataset = europarl_dataset_dict["test"]
|
486 |
+
#
|
487 |
+
# filtered and 3 hard negatives and 0 negatives
|
488 |
+
europarl_dataset_3hn = load_dataset('parquet', data_files={'parallel-sentences-europarl-redux_3hn/3_hard_negatives/*.parquet'})['train'].train_test_split(test_size=10000, seed=12)
|
489 |
+
europarl_3hn_train_dataset: Dataset = europarl_dataset_3hn["train"]
|
490 |
+
europarl_3hn_eval_dataset: Dataset = europarl_dataset_3hn["test"]
|
491 |
+
#
|
492 |
+
europarl_dataset_0hn = load_dataset('parquet', data_files={'parallel-sentences-europarl-redux_3hn/0_hard_negatives/*.parquet'})['train'].train_test_split(test_size=0.02, seed=12)
|
493 |
+
europarl_0hn_train_dataset: Dataset = europarl_dataset_0hn["train"]
|
494 |
+
europarl_0hn_eval_dataset: Dataset = europarl_dataset_0hn["test"]
|
495 |
+
print("Loaded europarl EN-DE dataset.")
|
496 |
+
#
|
497 |
+
print("Loading tatoeba EN-DE dataset...")
|
498 |
+
# source: https://huggingface.co/datasets/sentence-transformers/parallel-sentences-tatoeba
|
499 |
+
# original: https://tatoeba.org/
|
500 |
+
# entries: ~330k
|
501 |
+
#tatoeba_dataset = load_dataset("sentence-transformers/parallel-sentences-tatoeba", "en-de", split="train")
|
502 |
+
#tatoeba_dataset_dict = tatoeba_dataset.train_test_split(test_size=10000, seed=12)
|
503 |
+
#tatoeba_train_dataset: Dataset = tatoeba_dataset_dict["train"]
|
504 |
+
#tatoeba_eval_dataset: Dataset = tatoeba_dataset_dict["test"]
|
505 |
+
#
|
506 |
+
tatoeba_dataset_3hn = load_dataset('parquet', data_files={'parallel-sentences-tatoeba-en-de-hn/3_hard_negatives/*.parquet'})['train'].train_test_split(test_size=10000, seed=12)
|
507 |
+
tatoeba_3hn_train_dataset: Dataset = tatoeba_dataset_3hn["train"]
|
508 |
+
tatoeba_3hn_eval_dataset: Dataset = tatoeba_dataset_3hn["test"]
|
509 |
+
#
|
510 |
+
tatoeba_dataset_0hn = load_dataset('parquet', data_files={'parallel-sentences-tatoeba-en-de-hn/0_hard_negatives/*.parquet'})['train'].train_test_split(test_size=0.02, seed=12)
|
511 |
+
tatoeba_0hn_train_dataset: Dataset = tatoeba_dataset_0hn["train"]
|
512 |
+
tatoeba_0hn_eval_dataset: Dataset = tatoeba_dataset_0hn["test"]
|
513 |
+
print("Loaded tatoeba EN-DE dataset.")
|
514 |
+
#
|
515 |
+
print("Loading WikiMatrix EN-DE dataset...")
|
516 |
+
# source: (EN-DE) https://huggingface.co/datasets/sentence-transformers/parallel-sentences-wikimatrix
|
517 |
+
# License: CC BY-SA 4.0
|
518 |
+
# entries: ~344k
|
519 |
+
# Original dataset not used
|
520 |
+
#wikimatrix_dataset = load_dataset("sentence-transformers/parallel-sentences-wikimatrix", "en-de", split="train")
|
521 |
+
#wikimatrix_dataset_dict = wikimatrix_dataset.train_test_split(test_size=10000, seed=12)
|
522 |
+
#wikimatrix_train_dataset: Dataset = wikimatrix_dataset_dict["train"]
|
523 |
+
#wikimatrix_eval_dataset: Dataset = wikimatrix_dataset_dict["test"]
|
524 |
+
#
|
525 |
+
# scored and filtered hard negative version and remaining sentences
|
526 |
+
wikimatrix_3hn_ds = load_dataset('parquet', data_files={'parallel-sentences-wikimatrix-hn_3hn/3_hard_negatives/train-*.parquet'}, split='train')
|
527 |
+
wikimatrix_3hn_ds = wikimatrix_3hn_ds.train_test_split(test_size=10000, seed=12)
|
528 |
+
wikimatrix_3hn_train_ds: Dataset = wikimatrix_3hn_ds["train"]
|
529 |
+
wikimatrix_3hn_eval_ds: Dataset = wikimatrix_3hn_ds["test"]
|
530 |
+
#
|
531 |
+
wikimatrix_0hn_ds = load_dataset('parquet', data_files={'parallel-sentences-wikimatrix-hn_3hn/0_hard_negatives/train-*.parquet'}, split='train')
|
532 |
+
wikimatrix_0hn_ds = wikimatrix_0hn_ds.train_test_split(test_size=0.02, seed=12)
|
533 |
+
wikimatrix_0hn_train_ds: Dataset = wikimatrix_0hn_ds["train"]
|
534 |
+
wikimatrix_0hn_eval_ds: Dataset = wikimatrix_0hn_ds["test"]
|
535 |
+
#
|
536 |
+
print("Loaded WikiMatrix EN-DE dataset.")
|
537 |
+
#
|
538 |
+
print("Loading Wikipedia-Abstract DE dataset...")
|
539 |
+
# source: https://huggingface.co/datasets/laion/Wikipedia-Abstract
|
540 |
+
# License: MIT
|
541 |
+
# entries: 2.57M
|
542 |
+
# comment: relicensing a Wikipedia text to MIT is a bit unusual as it was Creative Commons Attribution-ShareAlike 4.0 and/or GNU Free Documentation License
|
543 |
+
# original version unused
|
544 |
+
#wikipedia_abstract_ds = load_dataset("laion/Wikipedia-Abstract", "German", split="train").select_columns(['Title', 'Abstract'])
|
545 |
+
#wikipedia_abstract_ds = wikipedia_abstract_ds.train_test_split(test_size=10000, seed=12)
|
546 |
+
#wikipedia_abstract_train_dataset: Dataset = wikipedia_abstract_ds["train"]
|
547 |
+
#wikipedia_abstract_eval_dataset: Dataset = wikipedia_abstract_ds["test"]
|
548 |
+
#
|
549 |
+
# hard negative version and remaining sentences
|
550 |
+
wikipedia_abstract_3hn_ds = load_dataset('parquet', data_files={'Wikipedia-Abstract-distilled_3hn/3_hard_negatives/train-*.parquet'}, split='train')
|
551 |
+
wikipedia_abstract_3hn_ds = wikipedia_abstract_3hn_ds.train_test_split(test_size=10000, seed=12)
|
552 |
+
wikipedia_abstract_3hn_train_dataset: Dataset = wikipedia_abstract_3hn_ds["train"]
|
553 |
+
wikipedia_abstract_3hn_eval_dataset: Dataset = wikipedia_abstract_3hn_ds["test"]
|
554 |
+
#
|
555 |
+
wikipedia_abstract_0hn_ds = load_dataset('parquet', data_files={'Wikipedia-Abstract-distilled_3hn/0_hard_negatives/train-*.parquet'}, split='train')
|
556 |
+
wikipedia_abstract_0hn_ds = wikipedia_abstract_0hn_ds.train_test_split(test_size=0.02, seed=12)
|
557 |
+
wikipedia_abstract_0hn_train_dataset: Dataset = wikipedia_abstract_0hn_ds["train"]
|
558 |
+
wikipedia_abstract_0hn_eval_dataset: Dataset = wikipedia_abstract_0hn_ds["test"]
|
559 |
+
print("Loaded Wikipedia-Abstract DE dataset.")
|
560 |
+
#
|
561 |
+
print("Loading wiktionary GDG-D DE dataset...")
|
562 |
+
# source: https://huggingface.co/jfeil/GermanDefinitionGeneration-Distillation
|
563 |
+
# License: gpl-3.0
|
564 |
+
# entries: ~900k
|
565 |
+
#
|
566 |
+
# GermanDefinitionGeneration-Distillation_3hn
|
567 |
+
wiktionary_gdg_de_3hn_train_ds: Dataset = load_dataset('parquet', data_files={'GermanDefinitionGeneration-Distillation_3hn/3_hard_negatives/train-*.parquet'}, split='train')
|
568 |
+
wiktionary_gdg_de_3hn_eval_ds: Dataset = load_dataset('parquet', data_files={'GermanDefinitionGeneration-Distillation_3hn/3_hard_negatives/validation-*.parquet'}, split='train')
|
569 |
+
#
|
570 |
+
# still needs optimisation
|
571 |
+
wiktionary_gdg_de_short_ds = load_dataset("jfeil/GermanDefinitionGeneration-Distillation")
|
572 |
+
wiktionary_gdg_de_short_ds = wiktionary_gdg_de_short_ds.select_columns(['context_sentence', 'title'])
|
573 |
+
wiktionary_gdg_de_short_train_dataset: Dataset = wiktionary_gdg_de_short_ds["train"]
|
574 |
+
wiktionary_gdg_de_short_eval_dataset: Dataset = wiktionary_gdg_de_short_ds["test"]
|
575 |
+
print("Loaded GDG-D DE dataset.")
|
576 |
+
#
|
577 |
+
print("Loading wmt24pp dataset...")
|
578 |
+
# source: https://huggingface.co/datasets/google/wmt24pp
|
579 |
+
# License: Apache-2.0
|
580 |
+
# interesting fields: source, target
|
581 |
+
# entries: 960 (after filtering of 'is_bad_source')
|
582 |
+
wmt24pp_dataset = load_dataset("google/wmt24pp", "en-de_DE", split="train").filter(lambda _: _["is_bad_source"] == False)
|
583 |
+
wmt24pp_dataset = wmt24pp_dataset.select_columns(['source', 'target'])
|
584 |
+
wmt24pp_dataset_dict = wmt24pp_dataset.train_test_split(test_size=0.02, seed=12)
|
585 |
+
wmt24pp_train_dataset: Dataset = wmt24pp_dataset_dict["train"]
|
586 |
+
wmt24pp_eval_dataset: Dataset = wmt24pp_dataset_dict["test"]
|
587 |
+
print("Loaded wmt24pp dataset.")
|
588 |
+
#
|
589 |
+
print("Loading synthia_german_experimental dataset...")
|
590 |
+
# source: https://huggingface.co/datasets/jphme/synthia_german_experimental
|
591 |
+
# original: https://huggingface.co/datasets/migtissera/Synthia-v1.3
|
592 |
+
# License: Apache-2.0
|
593 |
+
# interesting fields: instruction, response
|
594 |
+
# entries: ~100000
|
595 |
+
# final: 14453
|
596 |
+
# notes: filtered on scores, take only if all scores are "3" (best).
|
597 |
+
synthia_de_ds = load_dataset("jphme/synthia_german_experimental", split="train").filter(lambda _: _["score_deutsch"] == 3 and _["score_antwort"] == 3)
|
598 |
+
synthia_de_ds = synthia_de_ds.select_columns(["instruction", "response"])
|
599 |
+
synthia_de_ds = synthia_de_ds.train_test_split(test_size=0.02, seed=12)
|
600 |
+
synthia_de_train_dataset: Dataset = synthia_de_ds["train"]
|
601 |
+
synthia_de_eval_dataset: Dataset = synthia_de_ds["test"]
|
602 |
+
print("Loaded synthia_german_experimental dataset.")
|
603 |
+
#
|
604 |
+
print("Loading ger-backtrans-paraphrase dataset...")
|
605 |
+
# source: https://huggingface.co/datasets/deutsche-telekom/ger-backtrans-paraphrase
|
606 |
+
# License: CC-BY-SA-4.0
|
607 |
+
# entries: 21292789
|
608 |
+
# filtered: 862574 (tokens >= 25, cos_sim >=0.9)
|
609 |
+
# filtered: ~2.1M (tokens >= 17, cos_sim >=0.8) (once a try - results were really bad)
|
610 |
+
# notes: also thanks to Daniel Heinze for more filter examples
|
611 |
+
# source: https://huggingface.co/datasets/danielheinz/telekom-backtrans-paraphrase-filtered
|
612 |
+
# original dataset without hard negatives unused
|
613 |
+
#telekom_gbp_dataset = load_dataset("deutsche-telekom/ger-backtrans-paraphrase", split="train")
|
614 |
+
#telekom_gbp_dataset = telekom_gbp_dataset.filter(lambda _: _["cos_sim"] >= 0.9 and _["cos_sim"] < 0.999 and _["jaccard_similarity"] >= 0.3 and _["en_de_token_count"] >= 25 and _["de_token_count"] >= 25)
|
615 |
+
#telekom_gbp_dataset = telekom_gbp_dataset.select_columns(['en', 'de', 'en_de'])
|
616 |
+
# make a copy - but only with 'en_de' and 'de'
|
617 |
+
#telekom_gbp_ende_dataset = telekom_gbp_dataset.select_columns(['en_de', 'de'])
|
618 |
+
# build the 'original' set
|
619 |
+
#telekom_gbp_dataset_dict = telekom_gbp_dataset.train_test_split(test_size=0.05, seed=12)
|
620 |
+
#telekom_gbp_train_dataset: Dataset = telekom_gbp_dataset_dict["train"]
|
621 |
+
#telekom_gbp_eval_dataset: Dataset = telekom_gbp_dataset_dict["test"]
|
622 |
+
# now build a second set of 'bad' to 'good'
|
623 |
+
#telekom_gbp_ende_dataset_dict = telekom_gbp_ende_dataset.train_test_split(test_size=0.05, seed=12)
|
624 |
+
#telekom_gbp_ende_train_dataset: Dataset = telekom_gbp_ende_dataset_dict["train"]
|
625 |
+
#telekom_gbp_ende_eval_dataset: Dataset = telekom_gbp_ende_dataset_dict["test"]
|
626 |
+
#
|
627 |
+
# FILTERED, SPLIT AND WITH HARD NEGATIVES
|
628 |
+
gbp_3hn_ds = load_dataset('parquet', data_files={'ger-backtrans-paraphrase-350c-sts_3hn/3_hard_negatives/*.parquet'}, split="train")
|
629 |
+
gbp_3hn_add_ds = load_dataset('parquet', data_files={'ger-backtrans-paraphrase-200c-sts_3hn/3_hard_negatives/*.parquet'}, split="train")
|
630 |
+
gbp_3hn_ds = concatenate_datasets([gbp_3hn_ds, gbp_3hn_add_ds])
|
631 |
+
gbp_3hn_ds = gbp_3hn_ds.train_test_split(test_size=0.02, seed=12)
|
632 |
+
gbp_3hn_train_ds: Dataset = gbp_3hn_ds['train']
|
633 |
+
gbp_3hn_eval_ds: Dataset = gbp_3hn_ds['test']
|
634 |
+
#
|
635 |
+
gbp_0hn_ds = load_dataset('parquet', data_files={'ger-backtrans-paraphrase-350c-sts_3hn/0_hard_negatives/*.parquet'}, split="train")
|
636 |
+
gbp_0hn_add_ds = load_dataset('parquet', data_files={'ger-backtrans-paraphrase-200c-sts_3hn/0_hard_negatives/*.parquet'}, split="train")
|
637 |
+
gbp_0hn_ds = concatenate_datasets([gbp_0hn_ds, gbp_0hn_add_ds])
|
638 |
+
gbp_0hn_add_ds = load_dataset('parquet', data_files={'ger-backtrans-paraphrase-150c-sts_3hn/0_hard_negatives/*.parquet'}, split="train")
|
639 |
+
gbp_0hn_ds = concatenate_datasets([gbp_0hn_ds, gbp_0hn_add_ds])
|
640 |
+
gbp_0hn_ds = gbp_0hn_ds.train_test_split(test_size=0.02, seed=12)
|
641 |
+
gbp_0hn_train_ds: Dataset = gbp_0hn_ds['train']
|
642 |
+
gbp_0hn_eval_ds: Dataset = gbp_0hn_ds['test']
|
643 |
+
#
|
644 |
+
gbp_ende_3hn_ds = load_dataset('parquet', data_files={'ger-backtrans-paraphrase-en_de-350c-sts_3hn/3_hard_negatives/*.parquet'}, split="train")
|
645 |
+
gbp_ende_3hn_add_ds = load_dataset('parquet', data_files={'ger-backtrans-paraphrase-en_de-200c-sts_3hn/3_hard_negatives/*.parquet'}, split="train")
|
646 |
+
gbp_ende_3hn_ds = concatenate_datasets([gbp_ende_3hn_ds, gbp_ende_3hn_add_ds])
|
647 |
+
gbp_ende_3hn_add_ds = load_dataset('parquet', data_files={'ger-backtrans-paraphrase-en_de-150c-sts_3hn/3_hard_negatives/*.parquet'}, split="train")
|
648 |
+
gbp_ende_3hn_ds = concatenate_datasets([gbp_ende_3hn_ds, gbp_ende_3hn_add_ds])
|
649 |
+
gbp_ende_3hn_ds = gbp_ende_3hn_ds.train_test_split(test_size=0.02, seed=12)
|
650 |
+
gbp_ende_3hn_train_ds: Dataset = gbp_ende_3hn_ds['train']
|
651 |
+
gbp_ende_3hn_eval_ds: Dataset = gbp_ende_3hn_ds['test']
|
652 |
+
#
|
653 |
+
gbp_ende_0hn_ds = load_dataset('parquet', data_files={'ger-backtrans-paraphrase-en_de-350c-sts_3hn/0_hard_negatives/*.parquet'}, split="train")
|
654 |
+
gbp_ende_0hn_add_ds = load_dataset('parquet', data_files={'ger-backtrans-paraphrase-en_de-200c-sts_3hn/0_hard_negatives/*.parquet'}, split="train")
|
655 |
+
gbp_ende_0hn_ds = concatenate_datasets([gbp_ende_0hn_ds, gbp_ende_0hn_add_ds])
|
656 |
+
gbp_ende_0hn_add_ds = load_dataset('parquet', data_files={'ger-backtrans-paraphrase-en_de-150c-sts_3hn/0_hard_negatives/*.parquet'}, split="train")
|
657 |
+
gbp_ende_0hn_ds = concatenate_datasets([gbp_ende_0hn_ds, gbp_ende_0hn_add_ds])
|
658 |
+
gbp_ende_0hn_ds = gbp_ende_0hn_ds.train_test_split(test_size=0.02, seed=12)
|
659 |
+
gbp_ende_0hn_train_ds: Dataset = gbp_ende_0hn_ds['train']
|
660 |
+
gbp_ende_0hn_eval_ds: Dataset = gbp_ende_0hn_ds['test']
|
661 |
+
print("Loaded ger-backtrans-paraphrase dataset.")
|
662 |
+
#
|
663 |
+
print("Loading STSb Multi MT (de) dataset...")
|
664 |
+
# source: https://huggingface.co/datasets/PhilipMay/stsb_multi_mt
|
665 |
+
# License: CC-BY-SA-4.0 - https://github.com/PhilipMay/stsb-multi-mt/blob/main/LICENSE
|
666 |
+
# Original: https://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark
|
667 |
+
# entries: 5749
|
668 |
+
#stbs_de_dataset = load_dataset("PhilipMay/stsb_multi_mt", "de").filter(lambda _: _["similarity_score"] >= 1 and _["similarity_score"] < 5)
|
669 |
+
#stbs_de_dataset = stbs_de_dataset.select_columns(['sentence1', 'sentence2'])
|
670 |
+
#stbs_de_train_dataset: Dataset = stbs_de_dataset["train"]
|
671 |
+
#stbs_de_eval_dataset: Dataset = stbs_de_dataset["dev"]
|
672 |
+
#
|
673 |
+
stbs_de_3hn_train_dataset = load_dataset('parquet', data_files={'stsb_multi_mt-de-hn/3_hard_negatives/train*.parquet'}, split="train")
|
674 |
+
stbs_de_3hn_eval_dataset = load_dataset('parquet', data_files={'stsb_multi_mt-de-hn/3_hard_negatives/test*.parquet'}, split="train")
|
675 |
+
print("Loaded STSb Multi MT (de) dataset.")
|
676 |
+
#
|
677 |
+
print("Loading STSb Multi MT (en) dataset...")
|
678 |
+
# source: https://huggingface.co/datasets/PhilipMay/stsb_multi_mt
|
679 |
+
# License: CC-BY-SA-4.0 - https://github.com/PhilipMay/stsb-multi-mt/blob/main/LICENSE
|
680 |
+
# Original: https://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark
|
681 |
+
# entries: 5749
|
682 |
+
#stbs_en_dataset = load_dataset("PhilipMay/stsb_multi_mt", "en").filter(lambda _: _["similarity_score"] >= 1 and _["similarity_score"] < 5)
|
683 |
+
#stbs_en_dataset = stbs_en_dataset.select_columns(['sentence1', 'sentence2'])
|
684 |
+
#stbs_en_train_dataset: Dataset = stbs_en_dataset["train"]
|
685 |
+
#stbs_en_eval_dataset: Dataset = stbs_en_dataset["dev"]
|
686 |
+
#
|
687 |
+
stbs_en_3hn_train_dataset = load_dataset('parquet', data_files={'stsb_multi_mt-en-hn/3_hard_negatives/train*.parquet'}, split="train")
|
688 |
+
stbs_en_3hn_eval_dataset = load_dataset('parquet', data_files={'stsb_multi_mt-en-hn/3_hard_negatives/test*.parquet'}, split="train")
|
689 |
+
print("Loaded STSb Multi MT (en) dataset.")
|
690 |
+
#
|
691 |
+
print("Loading paws-x (de) dataset...")
|
692 |
+
# source: https://huggingface.co/datasets/google-research-datasets/paws-x
|
693 |
+
# License: Other - https://github.com/google-research-datasets/paws/blob/master/LICENSE
|
694 |
+
# License: The dataset may be freely used for any purpose, although acknowledgement of Google LLC ("Google") as the data source would be appreciated.
|
695 |
+
# entries: 49401
|
696 |
+
# Info: filtered only for "true" answers (["label"] == 1)
|
697 |
+
pawsx_de_dataset = load_dataset("google-research-datasets/paws-x", "de").filter(lambda _: _["label"] == 1)
|
698 |
+
pawsx_de_dataset = pawsx_de_dataset.select_columns(['sentence1', 'sentence2'])
|
699 |
+
pawsx_de_train_dataset: Dataset = pawsx_de_dataset["train"]
|
700 |
+
pawsx_de_eval_dataset: Dataset = pawsx_de_dataset["validation"]
|
701 |
+
|
702 |
+
print("Loaded paws-x (de) dataset.")
|
703 |
+
#
|
704 |
+
print("Loading paws-x (en) dataset...")
|
705 |
+
# source: https://huggingface.co/datasets/google-research-datasets/paws-x
|
706 |
+
# License: Other - https://github.com/google-research-datasets/paws/blob/master/LICENSE
|
707 |
+
# entries: 49401
|
708 |
+
pawsx_en_dataset = load_dataset("google-research-datasets/paws-x", "en").filter(lambda _: _["label"] == 1)
|
709 |
+
pawsx_en_dataset = pawsx_en_dataset.select_columns(['sentence1', 'sentence2'])
|
710 |
+
pawsx_en_train_dataset: Dataset = pawsx_en_dataset["train"]
|
711 |
+
pawsx_en_eval_dataset: Dataset = pawsx_en_dataset["validation"]
|
712 |
+
print("Loaded paws-x (en) dataset.")
|
713 |
+
#
|
714 |
+
print("Loading all NLI-26lang-2mil7 (local) datasets...")
|
715 |
+
# source: https://huggingface.co/datasets/MoritzLaurer/multilingual-NLI-26lang-2mil7
|
716 |
+
# License: MIT
|
717 |
+
# License-source: https://github.com/easonnie/combine-FEVER-NSMN
|
718 |
+
# entries: 25000
|
719 |
+
# info: 'label' – entailment (0), neutral (1), contradiction (2).
|
720 |
+
# for simple translations
|
721 |
+
main_name = 'multilingual-NLI-26lang-2mil7'
|
722 |
+
language = 'de'
|
723 |
+
entail = 'de_entailment'
|
724 |
+
transl = 'en_de'
|
725 |
+
subset = 'anli'
|
726 |
+
# anli entailments 3hn - de_anli_entail_3hn_train_ds
|
727 |
+
de_anli_entail_3hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{entail}_hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
728 |
+
de_anli_entail_3hn_train_ds: Dataset = de_anli_entail_3hn_ds['train']
|
729 |
+
de_anli_entail_3hn_eval_ds: Dataset = de_anli_entail_3hn_ds['test']
|
730 |
+
# anli entailments 0hn - de_anli_entail_0hn_train_ds
|
731 |
+
de_anli_entail_0hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{entail}_hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
732 |
+
de_anli_entail_0hn_train_ds: Dataset = de_anli_entail_0hn_ds['train']
|
733 |
+
de_anli_entail_0hn_eval_ds: Dataset = de_anli_entail_0hn_ds['test']
|
734 |
+
# anli translation 3hn - de_anli_transl_3hn_train_ds
|
735 |
+
de_anli_transl_3hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{transl}_hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
736 |
+
de_anli_transl_3hn_train_ds: Dataset = de_anli_transl_3hn_ds['train']
|
737 |
+
de_anli_transl_3hn_eval_ds: Dataset = de_anli_transl_3hn_ds['test']
|
738 |
+
# anli translation 0hn - de_anli_transl_0hn_train_ds
|
739 |
+
de_anli_transl_0hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{transl}_hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
740 |
+
de_anli_transl_0hn_train_ds: Dataset = de_anli_transl_0hn_ds['train']
|
741 |
+
de_anli_transl_0hn_eval_ds: Dataset = de_anli_transl_0hn_ds['test']
|
742 |
+
#
|
743 |
+
subset = 'fever'
|
744 |
+
# fever entailments 3hn - de_fever_entail_3hn_train_ds
|
745 |
+
de_fever_entail_3hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{entail}_hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
746 |
+
de_fever_entail_3hn_train_ds: Dataset = de_fever_entail_3hn_ds['train']
|
747 |
+
de_fever_entail_3hn_eval_ds: Dataset = de_fever_entail_3hn_ds['test']
|
748 |
+
# fever entailments 0hn - de_fever_entail_0hn_train_ds
|
749 |
+
de_fever_entail_0hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{entail}_hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
750 |
+
de_fever_entail_0hn_train_ds: Dataset = de_fever_entail_0hn_ds['train']
|
751 |
+
de_fever_entail_0hn_eval_ds: Dataset = de_fever_entail_0hn_ds['test']
|
752 |
+
# fever translation 3hn - de_fever_transl_3hn_train_ds
|
753 |
+
de_fever_transl_3hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{transl}_hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
754 |
+
de_fever_transl_3hn_train_ds: Dataset = de_fever_transl_3hn_ds['train']
|
755 |
+
de_fever_transl_3hn_eval_ds: Dataset = de_fever_transl_3hn_ds['test']
|
756 |
+
# fever translation 0hn - de_fever_transl_0hn_train_ds
|
757 |
+
de_fever_transl_0hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{transl}_hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
758 |
+
de_fever_transl_0hn_train_ds: Dataset = de_fever_transl_0hn_ds['train']
|
759 |
+
de_fever_transl_0hn_eval_ds: Dataset = de_fever_transl_0hn_ds['test']
|
760 |
+
#
|
761 |
+
subset = 'ling'
|
762 |
+
# ling entailments 3hn - de_ling_entail_3hn_train_ds
|
763 |
+
de_ling_entail_3hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{entail}_hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
764 |
+
de_ling_entail_3hn_train_ds: Dataset = de_ling_entail_3hn_ds['train']
|
765 |
+
de_ling_entail_3hn_eval_ds: Dataset = de_ling_entail_3hn_ds['test']
|
766 |
+
# ling entailments 0hn - de_ling_entail_0hn_train_ds
|
767 |
+
de_ling_entail_0hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{entail}_hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
768 |
+
de_ling_entail_0hn_train_ds: Dataset = de_ling_entail_0hn_ds['train']
|
769 |
+
de_ling_entail_0hn_eval_ds: Dataset = de_ling_entail_0hn_ds['test']
|
770 |
+
# ling translation 3hn - de_ling_transl_3hn_train_ds
|
771 |
+
de_ling_transl_3hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{transl}_hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
772 |
+
de_ling_transl_3hn_train_ds: Dataset = de_ling_transl_3hn_ds['train']
|
773 |
+
de_ling_transl_3hn_eval_ds: Dataset = de_ling_transl_3hn_ds['test']
|
774 |
+
# ling translation 0hn - de_ling_transl_0hn_train_ds
|
775 |
+
# this set is empty :D
|
776 |
+
#de_ling_transl_0hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{transl}_hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
777 |
+
#de_ling_transl_0hn_train_ds: Dataset = de_ling_transl_0hn_ds['train']
|
778 |
+
#de_ling_transl_0hn_eval_ds: Dataset = de_ling_transl_0hn_ds['test']
|
779 |
+
#
|
780 |
+
subset = 'mnli'
|
781 |
+
# mnli entailments 3hn - de_mnli_entail_3hn_train_ds
|
782 |
+
de_mnli_entail_3hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{entail}_hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
783 |
+
de_mnli_entail_3hn_train_ds: Dataset = de_mnli_entail_3hn_ds['train']
|
784 |
+
de_mnli_entail_3hn_eval_ds: Dataset = de_mnli_entail_3hn_ds['test']
|
785 |
+
# mnli entailments 0hn - de_mnli_entail_0hn_train_ds
|
786 |
+
de_mnli_entail_0hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{entail}_hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
787 |
+
de_mnli_entail_0hn_train_ds: Dataset = de_mnli_entail_0hn_ds['train']
|
788 |
+
de_mnli_entail_0hn_eval_ds: Dataset = de_mnli_entail_0hn_ds['test']
|
789 |
+
# mnli translation 3hn - de_mnli_transl_3hn_train_ds
|
790 |
+
de_mnli_transl_3hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{transl}_hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
791 |
+
de_mnli_transl_3hn_train_ds: Dataset = de_mnli_transl_3hn_ds['train']
|
792 |
+
de_mnli_transl_3hn_eval_ds: Dataset = de_mnli_transl_3hn_ds['test']
|
793 |
+
# mnli translation 0hn - de_mnli_transl_0hn_train_ds
|
794 |
+
de_mnli_transl_0hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{transl}_hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
795 |
+
de_mnli_transl_0hn_train_ds: Dataset = de_mnli_transl_0hn_ds['train']
|
796 |
+
de_mnli_transl_0hn_eval_ds: Dataset = de_mnli_transl_0hn_ds['test']
|
797 |
+
#
|
798 |
+
subset = 'wanli'
|
799 |
+
# wanli entailments 3hn - de_wanli_entail_3hn_train_ds
|
800 |
+
de_wanli_entail_3hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{entail}_hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
801 |
+
de_wanli_entail_3hn_train_ds: Dataset = de_wanli_entail_3hn_ds['train']
|
802 |
+
de_wanli_entail_3hn_eval_ds: Dataset = de_wanli_entail_3hn_ds['test']
|
803 |
+
# wanli entailments 0hn - de_wanli_entail_0hn_train_ds
|
804 |
+
de_wanli_entail_0hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{entail}_hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
805 |
+
de_wanli_entail_0hn_train_ds: Dataset = de_wanli_entail_0hn_ds['train']
|
806 |
+
de_wanli_entail_0hn_eval_ds: Dataset = de_wanli_entail_0hn_ds['test']
|
807 |
+
# wanli translation 3hn - de_wanli_transl_3hn_train_ds
|
808 |
+
de_wanli_transl_3hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{transl}_hn/3_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
809 |
+
de_wanli_transl_3hn_train_ds: Dataset = de_wanli_transl_3hn_ds['train']
|
810 |
+
de_wanli_transl_3hn_eval_ds: Dataset = de_wanli_transl_3hn_ds['test']
|
811 |
+
# wanli translation 0hn - de_wanli_transl_0hn_train_ds
|
812 |
+
de_wanli_transl_0hn_ds = load_dataset('parquet', data_files={f'{main_name}-{language}_{subset}-{transl}_hn/0_hard_negatives/*.parquet'}, split="train").train_test_split(test_size=0.02, seed=12)
|
813 |
+
de_wanli_transl_0hn_train_ds: Dataset = de_wanli_transl_0hn_ds['train']
|
814 |
+
de_wanli_transl_0hn_eval_ds: Dataset = de_wanli_transl_0hn_ds['test']
|
815 |
+
#
|
816 |
+
print("Loaded all NLI-26lang-2mil7 (local hn) datasets...")
|
817 |
+
#
|
818 |
+
# regular dataset unused
|
819 |
+
#print("Loading NLI-26lang-2mil7 (anli) dataset...")
|
820 |
+
# source: https://huggingface.co/datasets/MoritzLaurer/multilingual-NLI-26lang-2mil7
|
821 |
+
# License: MIT
|
822 |
+
# License-source: https://github.com/easonnie/combine-FEVER-NSMN
|
823 |
+
# entries: 25000
|
824 |
+
# info: 'label' – entailment (0), neutral (1), contradiction (2).
|
825 |
+
# for simple translations
|
826 |
+
#NLI_de_anli_dataset = load_dataset("MoritzLaurer/multilingual-NLI-26lang-2mil7", split="de_anli")
|
827 |
+
#NLI_de_anli_ende_dataset = NLI_de_anli_dataset.select_columns(['hypothesis_original', 'hypothesis']).rename_columns({'hypothesis_original': 'sentence1', 'hypothesis': 'sentence2'})
|
828 |
+
#NLI_de_anli_ende_dataset2 = NLI_de_anli_dataset.select_columns(['premise_original', 'premise']).rename_columns({'premise_original': 'sentence1', 'premise': 'sentence2'})
|
829 |
+
#NLI_de_anli_ende_dataset = concatenate_datasets([NLI_de_anli_ende_dataset, NLI_de_anli_ende_dataset2])
|
830 |
+
#del NLI_de_anli_ende_dataset2
|
831 |
+
#NLI_de_anli_ende_dataset = NLI_de_anli_ende_dataset.train_test_split(test_size=0.05, seed=12)
|
832 |
+
#NLI_de_anli_ende_train_dataset: Dataset = NLI_de_anli_ende_dataset["train"]
|
833 |
+
#NLI_de_anli_ende_eval_dataset: Dataset = NLI_de_anli_ende_dataset["test"]
|
834 |
+
#
|
835 |
+
# for simple entailments from "long" to "conclusion" (like classification)
|
836 |
+
#NLI_de_anli_de_entailment_dataset = NLI_de_anli_dataset.select_columns = NLI_de_anli_dataset.filter(lambda _: _["label"] == 0).select_columns(['premise', 'hypothesis']).rename_columns({'premise': 'sentence1', 'hypothesis': 'sentence2'})
|
837 |
+
#del NLI_de_anli_dataset
|
838 |
+
#NLI_de_anli_de_entailment_dataset = NLI_de_anli_de_entailment_dataset.train_test_split(test_size=0.05, seed=12)
|
839 |
+
#NLI_de_anli_entailment_train_dataset: Dataset = NLI_de_anli_de_entailment_dataset["train"]
|
840 |
+
#NLI_de_anli_entailment_eval_dataset: Dataset = NLI_de_anli_de_entailment_dataset["test"]
|
841 |
+
#print("Loaded NLI-26lang-2mil7 (anli) dataset.")
|
842 |
+
#
|
843 |
+
#print("Loading NLI-26lang-2mil7 (fever) dataset...")
|
844 |
+
# source: https://huggingface.co/datasets/MoritzLaurer/multilingual-NLI-26lang-2mil7
|
845 |
+
# License: MIT
|
846 |
+
# License-source: https://github.com/easonnie/combine-FEVER-NSMN
|
847 |
+
# entries: 25000
|
848 |
+
#NLI_de_fever_dataset = load_dataset("MoritzLaurer/multilingual-NLI-26lang-2mil7", split="de_fever")
|
849 |
+
#NLI_de_fever_dataset2 = NLI_de_fever_dataset
|
850 |
+
#NLI_de_fever_dataset3 = NLI_de_fever_dataset.filter(lambda _: _["label"] == 0).select_columns(['premise', 'hypothesis'])
|
851 |
+
#NLI_de_fever_dataset = NLI_de_fever_dataset.remove_columns(['label', 'hypothesis_original', 'hypothesis'])
|
852 |
+
#NLI_de_fever_dataset2 = NLI_de_fever_dataset2.remove_columns(['label', 'premise_original', 'premise'])
|
853 |
+
#NLI_de_fever_dataset2 = NLI_de_fever_dataset2.rename_column('hypothesis_original', 'sentence1')
|
854 |
+
#NLI_de_fever_dataset2 = NLI_de_fever_dataset2.rename_column('hypothesis', 'sentence2')
|
855 |
+
#NLI_de_fever_dataset3 = NLI_de_fever_dataset3.rename_column('hypothesis', 'sentence2')
|
856 |
+
#NLI_de_fever_dataset_dict = NLI_de_fever_dataset.train_test_split(test_size=0.05, seed=12)
|
857 |
+
#NLI_de_fever_dataset2_dict = NLI_de_fever_dataset2.train_test_split(test_size=0.05, seed=12)
|
858 |
+
#NLI_de_fever_dataset3_dict = NLI_de_fever_dataset3.train_test_split(test_size=0.05, seed=12)
|
859 |
+
#NLI_de_fever_train_dataset: Dataset = NLI_de_fever_dataset_dict["train"]
|
860 |
+
#NLI_de_fever_eval_dataset: Dataset = NLI_de_fever_dataset_dict["test"]
|
861 |
+
#NLI_de_fever_train2_dataset: Dataset = NLI_de_fever_dataset2_dict["train"]
|
862 |
+
#NLI_de_fever_eval2_dataset: Dataset = NLI_de_fever_dataset2_dict["test"]
|
863 |
+
#NLI_de_fever_train3_dataset: Dataset = NLI_de_fever_dataset3_dict["train"]
|
864 |
+
#NLI_de_fever_eval3_dataset: Dataset = NLI_de_fever_dataset3_dict["test"]
|
865 |
+
#print("Loaded NLI-26lang-2mil7 (fever) dataset.")
|
866 |
+
#
|
867 |
+
print("Loading Jina AI dataset...")
|
868 |
+
# source: https://huggingface.co/datasets/jinaai/parallel-sentences
|
869 |
+
# License: Apache-2.0
|
870 |
+
# entries: 1000
|
871 |
+
# info: sadly JinaAI delivers only 1000 pairs (we know we could do better by …)
|
872 |
+
# Info: Multilingual in different columns
|
873 |
+
jina_ai_ps_dataset = load_dataset("jinaai/parallel-sentences", split="train")
|
874 |
+
jina_ai_ps_dataset_3en = jina_ai_ps_dataset.select_columns(['anchor', 'entailment', 'negative'])
|
875 |
+
jina_ai_ps_dataset_en_de = jina_ai_ps_dataset.select_columns(['anchor', 'anchor_de'])
|
876 |
+
jina_ai_ps_dataset_de_de = jina_ai_ps_dataset.select_columns(['anchor_de', 'entailment_de'])
|
877 |
+
# splits
|
878 |
+
jina_ai_ps_dataset_3en_dict = jina_ai_ps_dataset_3en.train_test_split(test_size=0.05, seed=12)
|
879 |
+
jina_ai_ps_dataset_en_de_dict = jina_ai_ps_dataset_en_de.train_test_split(test_size=0.05, seed=12)
|
880 |
+
jina_ai_ps_dataset_de_de_dict = jina_ai_ps_dataset_de_de.train_test_split(test_size=0.05, seed=12)
|
881 |
+
jina_ai_ps_train_3en: Dataset = jina_ai_ps_dataset_3en_dict["train"]
|
882 |
+
jina_ai_ps_eval_3en: Dataset = jina_ai_ps_dataset_3en_dict["test"]
|
883 |
+
jina_ai_ps_train_en_de: Dataset = jina_ai_ps_dataset_en_de_dict["train"]
|
884 |
+
jina_ai_ps_eval_en_de: Dataset = jina_ai_ps_dataset_en_de_dict["test"]
|
885 |
+
jina_ai_ps_train_de_de: Dataset = jina_ai_ps_dataset_de_de_dict["train"]
|
886 |
+
jina_ai_ps_eval_de_de: Dataset = jina_ai_ps_dataset_de_de_dict["test"]
|
887 |
+
print("Loaded Jina AI dataset.")
|
888 |
+
#
|
889 |
+
print("Loading Polyglot-or-Not (de) dataset...")
|
890 |
+
# source: https://huggingface.co/datasets/Polyglot-or-Not/Fact-Completion/
|
891 |
+
# License: Apache-2.0
|
892 |
+
# entries: 16287
|
893 |
+
polyglot_de_dataset = load_dataset("Polyglot-or-Not/Fact-Completion", split="German").select_columns(['stem', 'true', 'false'])
|
894 |
+
polyglot_de_dict = polyglot_de_dataset.train_test_split(test_size=0.05, seed=12)
|
895 |
+
polyglot_de_train_dataset: Dataset = polyglot_de_dict["train"]
|
896 |
+
polyglot_de_eval_dataset: Dataset = polyglot_de_dict["test"]
|
897 |
+
print("Loaded Polyglot-or-Not (de) dataset.")
|
898 |
+
#
|
899 |
+
print("Loading Polyglot-or-Not (en) dataset...")
|
900 |
+
# source: https://huggingface.co/datasets/Polyglot-or-Not/Fact-Completion/
|
901 |
+
# License: Apache-2.0
|
902 |
+
# entries: 26254
|
903 |
+
polyglot_en_dataset = load_dataset("Polyglot-or-Not/Fact-Completion", split="English").select_columns(['stem', 'true', 'false'])
|
904 |
+
polyglot_en_dict = polyglot_en_dataset.train_test_split(test_size=0.05, seed=12)
|
905 |
+
polyglot_en_train_dataset: Dataset = polyglot_en_dict["train"]
|
906 |
+
polyglot_en_eval_dataset: Dataset = polyglot_en_dict["test"]
|
907 |
+
print("Loaded Polyglot-or-Not (de) dataset.")
|
908 |
+
#
|
909 |
+
print("Loading Tilde_MODEL_EESC (en_de) dataset...")
|
910 |
+
# Tilde MODEL - EESC is a multilingual corpus compiled from document texts of European Economic and Social Committee document portal. Source: http://dm.eesc.europa.eu/
|
911 |
+
# License: CC-BY - Creative Commons with Attribution
|
912 |
+
# Roberts Rozis, Raivis Skadins, 2017, Tilde MODEL - Multilingual Open Data for EU Languages. Proceedings of the 21th Nordic Conference of Computational Linguistics NODALIDA 2017.
|
913 |
+
# https://tilde-model.s3-eu-west-1.amazonaws.com/nodalida2017_Tilde_MODEL.pdf
|
914 |
+
# https://tilde-model.s3-eu-west-1.amazonaws.com/Tilde_MODEL_Corpus.html
|
915 |
+
#
|
916 |
+
# entries: 1860675
|
917 |
+
# filtered: 1683698
|
918 |
+
# Original (local) version without hard negatives ignored
|
919 |
+
#tilde_EESC_dataset = load_dataset("parquet", data_files={'Tilde_MODEL_EESC/EESC.de-en-distilled-scored.parquet.br'}, split='train').filter(lambda _: _['score_sts'] > 0.5 and _['score_sts'] < 1).select_columns(['en', 'de'])
|
920 |
+
#tilde_EESC_dataset = tilde_EESC_dataset.train_test_split(test_size=10000, seed=12)
|
921 |
+
#tilde_EESC_train_dataset: Dataset = tilde_EESC_dataset["train"]
|
922 |
+
#tilde_EESC_eval_dataset: Dataset = tilde_EESC_dataset["test"]
|
923 |
+
#del tilde_EESC_dataset
|
924 |
+
#
|
925 |
+
# loading version with 3 hard negative ignoring folder with 0 negatives
|
926 |
+
tilde_EESC_dataset = load_dataset("parquet", data_files={'Tilde_EESC-en-de_hn/3_hard_negatives/train-*.parquet'}, split='train')
|
927 |
+
tilde_EESC_dataset = tilde_EESC_dataset.train_test_split(test_size=10000, seed=12)
|
928 |
+
tilde_EESC_train_dataset: Dataset = tilde_EESC_dataset["train"]
|
929 |
+
tilde_EESC_eval_dataset: Dataset = tilde_EESC_dataset["test"]
|
930 |
+
del tilde_EESC_dataset
|
931 |
+
#
|
932 |
+
print("Loaded Tilde_MODEL_EESC (en_de) dataset.")
|
933 |
+
#
|
934 |
+
print("Loading Tilde_MODEL_RAPID (en_de) dataset...")
|
935 |
+
# Tilde MODEL - RAPID multilingual parallel corpus is compiled from all press releases of Press Release Database of European Commission released between 1975 and end of 2016 as available from http://europa.eu/rapid/.
|
936 |
+
# License: CC-BY - Creative Commons with Attribution
|
937 |
+
# Roberts Rozis, Raivis Skadins, 2017, Tilde MODEL - Multilingual Open Data for EU Languages. Proceedings of the 21th Nordic Conference of Computational Linguistics NODALIDA 2017.
|
938 |
+
# https://tilde-model.s3-eu-west-1.amazonaws.com/nodalida2017_Tilde_MODEL.pdf
|
939 |
+
# https://tilde-model.s3-eu-west-1.amazonaws.com/Tilde_MODEL_Corpus.html
|
940 |
+
#
|
941 |
+
# entries: 779236
|
942 |
+
# filtered: 727743
|
943 |
+
# original scored set needs to be uploaded
|
944 |
+
# Original (local) version without hard negatives ignored
|
945 |
+
#tilde_RAPID_dataset = load_dataset("parquet", data_files={'Tilde_MODEL_RAPID/RAPID_2019.UNIQUE.de-en-distilled-scored.parquet'}, split='train').filter(lambda _: _['score_sts'] > 0.5 and _['score_sts'] < 1).select_columns(['en', 'de'])
|
946 |
+
#tilde_RAPID_dataset = tilde_RAPID_dataset.train_test_split(test_size=10000, seed=12)
|
947 |
+
#tilde_RAPID_train_dataset: Dataset = tilde_RAPID_dataset["train"]
|
948 |
+
#tilde_RAPID_eval_dataset: Dataset = tilde_RAPID_dataset["test"]
|
949 |
+
#del tilde_RAPID_dataset
|
950 |
+
#
|
951 |
+
# loading version with 3 hard negative ignoring folder with 0 negatives
|
952 |
+
tilde_RAPID_dataset = load_dataset("parquet", data_files={'Tilde_RAPID_2019-en-de-hn/3_hard_negatives/train-*.parquet'}, split='train')
|
953 |
+
tilde_RAPID_dataset = tilde_RAPID_dataset.train_test_split(test_size=10000, seed=12)
|
954 |
+
tilde_RAPID_train_dataset: Dataset = tilde_RAPID_dataset["train"]
|
955 |
+
tilde_RAPID_eval_dataset: Dataset = tilde_RAPID_dataset["test"]
|
956 |
+
del tilde_RAPID_dataset
|
957 |
+
print("Loaded Tilde_MODEL_RAPID (en_de) dataset.")
|
958 |
+
#
|
959 |
+
print("Loading miracl (de) as classification dataset...")
|
960 |
+
miracl_de_dataset = load_dataset('parquet', data_files={'miracl-corpus-de-hn-*/3_hard_negatives/train-*.parquet'}, split='train')
|
961 |
+
miracl_de_dataset = miracl_de_dataset.train_test_split(test_size=10000, seed=12)
|
962 |
+
miracl_de_train_dataset: Dataset = miracl_de_dataset["train"]
|
963 |
+
miracl_de_eval_dataset: Dataset = miracl_de_dataset["test"]
|
964 |
+
#
|
965 |
+
miracl_de_0hn_dataset = load_dataset('parquet', data_files={'miracl-corpus-de-hn_hn/0_hard_negatives/train-*.parquet'}, split='train')
|
966 |
+
miracl_de_0hn_dataset = miracl_de_0hn_dataset.train_test_split(test_size=0.02, seed=12)
|
967 |
+
miracl_de_0hn_train_dataset: Dataset = miracl_de_0hn_dataset['train']
|
968 |
+
miracl_de_0hn_eval_dataset: Dataset = miracl_de_0hn_dataset['test']
|
969 |
+
print("Loaded miracl (de) as classification dataset.")
|
970 |
+
#
|
971 |
+
train_dataset = DatasetDict({
|
972 |
+
'mmarco_3hn': mmarco_de_3hn_train_dataset,
|
973 |
+
'mmarco_2hn': mmarco_de_2hn_train_dataset,
|
974 |
+
'mmarco_1hn': mmarco_de_1hn_train_dataset,
|
975 |
+
'mmarco_0hn': mmarco_de_0hn_train_dataset,
|
976 |
+
'wp-22-12-de': wp_2212_de_train_dataset,
|
977 |
+
#'wp-22-12-de_3hn': wp_2212_de_train_dataset,
|
978 |
+
#'wp-22-12-de_0hn': wp_2212_de_0_train_dataset,
|
979 |
+
'swim_ir_de': swim_ir_de_train_dataset,
|
980 |
+
'swim_ir_de_3hn': swim_ir_de_3hn_train_dataset,
|
981 |
+
'swim_ir_de_title_3hn': swim_ir_de_title_3hn_train_dataset,
|
982 |
+
'swim_ir_de_title': swim_ir_de_title_train_dataset,
|
983 |
+
'avemio_triples': avemio_triples_train_dataset,
|
984 |
+
'avemio_pairs_3hn': avemio_pairs_3hn_train_ds,
|
985 |
+
'avemio_pairs_0hn': avemio_pairs_0hn_train_ds,
|
986 |
+
'nq_german_en_de_a_3hn': nq_german_en_de_a_3hn_train_ds,
|
987 |
+
'nq_german_en_de_3hn': nq_german_en_de_3hn_train_ds,
|
988 |
+
'nq_german_3hn': nq_german_3hn_train_ds,
|
989 |
+
'nq_german_1hn': nq_german_1hn_train_ds,
|
990 |
+
#'german_oasst1': german_oasst1_train_dataset,
|
991 |
+
'german_oasst1_hn': german_oasst1_hn_train_dataset,
|
992 |
+
'germanrag_short': germanrag_short_train_dataset,
|
993 |
+
'slimorca_dedup_3hn': slimorca_dedup_3hn_train_ds,
|
994 |
+
'slimorca_dedup_2hn': slimorca_dedup_2hn_train_ds,
|
995 |
+
'slimorca_dedup_1hn': slimorca_dedup_1hn_train_ds,
|
996 |
+
'slimorca_dedup_0hn': slimorca_dedup_0hn_train_ds,
|
997 |
+
#'german_gpt4': german_gpt4_train_dataset,
|
998 |
+
'german_gpt4_3hn': german_gpt4_3hn_train_dataset,
|
999 |
+
'german_orca_dpo': german_orca_dpo_train_dataset,
|
1000 |
+
'alpaca_gpt4_3hn': alpaca_gpt4_de_3hn_train_dataset,
|
1001 |
+
'alpaca_gpt4_0hn': alpaca_gpt4_de_0hn_train_dataset,
|
1002 |
+
'dolly_context_de_3hn': dolly_context_de_3hn_train_ds,
|
1003 |
+
#'dolly_context_de_0hn': dolly_context_de_0hn_train_ds,
|
1004 |
+
'dolly_context_ende_3hn': dolly_context_ende_3hn_train_ds,
|
1005 |
+
'dolly_instructions_de_3hn': dolly_instructions_de_3hn_train_ds,
|
1006 |
+
'dolly_instructions_de_0hn': dolly_instructions_de_0hn_train_ds,
|
1007 |
+
'dolly_instructions_ende_3hn': dolly_instructions_ende_3hn_train_ds,
|
1008 |
+
#'dolly_instructions_ende_0hn': dolly_instructions_ende_0hn_train_ds,
|
1009 |
+
'dolly_responses_de_3hn': dolly_responses_de_3hn_train_ds,
|
1010 |
+
'dolly_responses_de_0hn': dolly_responses_de_0hn_train_ds,
|
1011 |
+
'dolly_responses_ende_3hn': dolly_responses_ende_3hn_train_ds,
|
1012 |
+
#'dolly_responses_ende_0hn': dolly_responses_ende_0hn_train_ds,
|
1013 |
+
'saf_legal_de': saf_legal_de_train_ds,
|
1014 |
+
'gls_3hn': gls_3hn_train_dataset,
|
1015 |
+
'gls_2hn': gls_2hn_train_dataset,
|
1016 |
+
'gls_1hn': gls_1hn_train_dataset,
|
1017 |
+
'gls_0hn': gls_0hn_train_dataset,
|
1018 |
+
'europarl_3hn': europarl_3hn_train_dataset,
|
1019 |
+
'europarl_0hn': europarl_0hn_train_dataset,
|
1020 |
+
#'tatoeba': tatoeba_train_dataset,
|
1021 |
+
'tatoeba_3hn': tatoeba_3hn_train_dataset,
|
1022 |
+
'tatoeba_0hn': tatoeba_0hn_train_dataset,
|
1023 |
+
'wikimatrix_3hn': wikimatrix_3hn_train_ds,
|
1024 |
+
#'wikimatrix_0hn': wikimatrix_0hn_train_ds,
|
1025 |
+
'wikipedia_abstract_3hn': wikipedia_abstract_3hn_train_dataset,
|
1026 |
+
'wikipedia_abstract_0hn': wikipedia_abstract_0hn_train_dataset,
|
1027 |
+
'wiktionary_gdg_de_3hn': wiktionary_gdg_de_3hn_train_ds,
|
1028 |
+
'wiktionary_gdg_de_short': wiktionary_gdg_de_short_train_dataset,
|
1029 |
+
'wmt24pp': wmt24pp_train_dataset,
|
1030 |
+
'synthia_de': synthia_de_train_dataset,
|
1031 |
+
'gbp_3hn': gbp_3hn_train_ds,
|
1032 |
+
#'gbp_0hn': gbp_0hn_train_ds,
|
1033 |
+
'gbp_ende_3hn': gbp_ende_3hn_train_ds,
|
1034 |
+
#'gbp_ende_0hn': gbp_ende_0hn_train_ds,
|
1035 |
+
#'stbs_de': stbs_de_train_dataset,
|
1036 |
+
'stbs_de_3hn': stbs_de_3hn_train_dataset,
|
1037 |
+
#'stbs_en': stbs_en_train_dataset,
|
1038 |
+
'stbs_en_3hn': stbs_en_3hn_train_dataset,
|
1039 |
+
'pawsx_de': pawsx_de_train_dataset,
|
1040 |
+
'pawsx_en': pawsx_en_train_dataset,
|
1041 |
+
'nli_anli_entail_3hn': de_anli_entail_3hn_train_ds,
|
1042 |
+
'nli_fever_entail_3hn': de_fever_entail_3hn_train_ds,
|
1043 |
+
'nli_ling_entail_3hn': de_ling_entail_3hn_train_ds,
|
1044 |
+
'nli_mnli_entail_3hn': de_mnli_entail_3hn_train_ds,
|
1045 |
+
'nli_wanli_entail_3hn': de_wanli_entail_3hn_train_ds,
|
1046 |
+
#'nli_anli_entail_0hn': de_anli_entail_0hn_train_ds,
|
1047 |
+
#'nli_fever_entail_0hn': de_fever_entail_0hn_train_ds,
|
1048 |
+
#'nli_ling_entail_0hn': de_ling_entail_0hn_train_ds,
|
1049 |
+
#'nli_mnli_entail_0hn': de_mnli_entail_0hn_train_ds,
|
1050 |
+
#'nli_wanli_entail_0hn': de_wanli_entail_0hn_train_ds,
|
1051 |
+
'nli_anli_transl_3hn': de_anli_transl_3hn_train_ds,
|
1052 |
+
'nli_fever_transl_3hn': de_fever_transl_3hn_train_ds,
|
1053 |
+
'nli_ling_transl_3hn': de_ling_transl_3hn_train_ds,
|
1054 |
+
'nli_mnli_transl_3hn': de_mnli_transl_3hn_train_ds,
|
1055 |
+
'nli_wanli_transl_3hn': de_wanli_transl_3hn_train_ds,
|
1056 |
+
#'nli_anli_transl_0hn': de_anli_transl_0hn_train_ds,
|
1057 |
+
#'nli_fever_transl_0hn': de_fever_transl_0hn_train_ds,
|
1058 |
+
#'nli_ling_transl_0hn': de_ling_transl_0hn_train_ds,
|
1059 |
+
#'nli_mnli_transl_0hn': de_mnli_transl_0hn_train_ds,
|
1060 |
+
#'nli_wanli_transl_0hn': de_wanli_transl_0hn_train_ds,
|
1061 |
+
'jina_ai_3en': jina_ai_ps_train_3en,
|
1062 |
+
'jina_ai_ende': jina_ai_ps_train_en_de,
|
1063 |
+
'jina_ai_dede': jina_ai_ps_train_de_de,
|
1064 |
+
'polyglot_de': polyglot_de_train_dataset,
|
1065 |
+
'polyglot_en': polyglot_en_train_dataset,
|
1066 |
+
'tilde_EESC': tilde_EESC_train_dataset,
|
1067 |
+
#'tilde_RAPID': tilde_RAPID_train_dataset,
|
1068 |
+
'miracl_de_3hn': miracl_de_train_dataset,
|
1069 |
+
'miracl_de_0hn': miracl_de_0hn_train_dataset,
|
1070 |
+
})
|
1071 |
+
eval_dataset = DatasetDict({
|
1072 |
+
'mmarco_3hn': mmarco_de_3hn_eval_dataset,
|
1073 |
+
'mmarco_2hn': mmarco_de_2hn_eval_dataset,
|
1074 |
+
'mmarco_1hn': mmarco_de_1hn_eval_dataset,
|
1075 |
+
'mmarco_0hn': mmarco_de_0hn_eval_dataset,
|
1076 |
+
'wp-22-12-de': wp_2212_de_eval_dataset,
|
1077 |
+
#'wp-22-12-de_3hn': wp_2212_de_eval_dataset,
|
1078 |
+
#'wp-22-12-de_0hn': wp_2212_de_0_eval_dataset,
|
1079 |
+
'swim_ir_de': swim_ir_de_eval_dataset,
|
1080 |
+
'swim_ir_de_3hn': swim_ir_de_3hn_eval_dataset,
|
1081 |
+
'swim_ir_de_title_3hn': swim_ir_de_title_3hn_eval_dataset,
|
1082 |
+
'swim_ir_de_title': swim_ir_de_title_eval_dataset,
|
1083 |
+
'avemio_triples': avemio_triples_eval_dataset,
|
1084 |
+
'avemio_pairs_3hn': avemio_pairs_3hn_eval_ds,
|
1085 |
+
'avemio_pairs_0hn': avemio_pairs_0hn_eval_ds,
|
1086 |
+
'nq_german_en_de_a_3hn': nq_german_en_de_a_3hn_eval_ds,
|
1087 |
+
'nq_german_en_de_3hn': nq_german_en_de_3hn_eval_ds,
|
1088 |
+
'nq_german_3hn': nq_german_3hn_eval_ds,
|
1089 |
+
'nq_german_1hn': nq_german_1hn_eval_ds,
|
1090 |
+
#'german_oasst1': german_oasst1_eval_dataset,
|
1091 |
+
'german_oasst1_hn': german_oasst1_hn_eval_dataset,
|
1092 |
+
'germanrag_short': germanrag_short_eval_dataset,
|
1093 |
+
'slimorca_dedup_3hn': slimorca_dedup_3hn_eval_ds,
|
1094 |
+
'slimorca_dedup_2hn': slimorca_dedup_2hn_eval_ds,
|
1095 |
+
'slimorca_dedup_1hn': slimorca_dedup_1hn_eval_ds,
|
1096 |
+
'slimorca_dedup_0hn': slimorca_dedup_0hn_eval_ds,
|
1097 |
+
#'german_gpt4': german_gpt4_eval_dataset,
|
1098 |
+
'german_gpt4_3hn': german_gpt4_3hn_eval_dataset,
|
1099 |
+
'german_orca_dpo': german_orca_dpo_eval_dataset,
|
1100 |
+
'alpaca_gpt4_3hn': alpaca_gpt4_de_3hn_eval_dataset,
|
1101 |
+
'alpaca_gpt4_0hn': alpaca_gpt4_de_0hn_eval_dataset,
|
1102 |
+
'dolly_context_de_3hn': dolly_context_de_3hn_eval_ds,
|
1103 |
+
#'dolly_context_de_0hn': dolly_context_de_0hn_eval_ds,
|
1104 |
+
'dolly_context_ende_3hn': dolly_context_ende_3hn_eval_ds,
|
1105 |
+
'dolly_instructions_de_3hn': dolly_instructions_de_3hn_eval_ds,
|
1106 |
+
'dolly_instructions_de_0hn': dolly_instructions_de_0hn_eval_ds,
|
1107 |
+
'dolly_instructions_ende_3hn': dolly_instructions_ende_3hn_eval_ds,
|
1108 |
+
#'dolly_instructions_ende_0hn': dolly_instructions_ende_0hn_eval_ds,
|
1109 |
+
'dolly_responses_de_3hn': dolly_responses_de_3hn_eval_ds,
|
1110 |
+
'dolly_responses_de_0hn': dolly_responses_de_0hn_eval_ds,
|
1111 |
+
'dolly_responses_ende_3hn': dolly_responses_ende_3hn_eval_ds,
|
1112 |
+
#'dolly_responses_ende_0hn': dolly_responses_ende_0hn_eval_ds,
|
1113 |
+
'saf_legal_de': saf_legal_de_eval_ds,
|
1114 |
+
'gls_3hn': gls_3hn_eval_dataset,
|
1115 |
+
'gls_2hn': gls_2hn_eval_dataset,
|
1116 |
+
'gls_1hn': gls_1hn_eval_dataset,
|
1117 |
+
'gls_0hn': gls_0hn_eval_dataset,
|
1118 |
+
'europarl_3hn': europarl_3hn_eval_dataset,
|
1119 |
+
'europarl_0hn': europarl_0hn_eval_dataset,
|
1120 |
+
#'tatoeba': tatoeba_eval_dataset,
|
1121 |
+
'tatoeba_3hn': tatoeba_3hn_eval_dataset,
|
1122 |
+
'tatoeba_0hn': tatoeba_0hn_eval_dataset,
|
1123 |
+
'wikimatrix_3hn': wikimatrix_3hn_eval_ds,
|
1124 |
+
#'wikimatrix_0hn': wikimatrix_0hn_eval_ds,
|
1125 |
+
'wikipedia_abstract_3hn': wikipedia_abstract_3hn_eval_dataset,
|
1126 |
+
'wikipedia_abstract_0hn': wikipedia_abstract_0hn_eval_dataset,
|
1127 |
+
'wiktionary_gdg_de_3hn': wiktionary_gdg_de_3hn_eval_ds,
|
1128 |
+
'wiktionary_gdg_de_short': wiktionary_gdg_de_short_eval_dataset,
|
1129 |
+
'wmt24pp': wmt24pp_eval_dataset,
|
1130 |
+
'synthia_de': synthia_de_eval_dataset,
|
1131 |
+
'gbp_3hn': gbp_3hn_eval_ds,
|
1132 |
+
#'gbp_0hn': gbp_0hn_eval_ds,
|
1133 |
+
'gbp_ende_3hn': gbp_ende_3hn_eval_ds,
|
1134 |
+
#'gbp_ende_0hn': gbp_ende_0hn_eval_ds,
|
1135 |
+
#'stbs_de': stbs_de_eval_dataset,
|
1136 |
+
'stbs_de_3hn': stbs_de_3hn_eval_dataset,
|
1137 |
+
#'stbs_en': stbs_en_eval_dataset,
|
1138 |
+
'stbs_en_3hn': stbs_en_3hn_eval_dataset,
|
1139 |
+
'pawsx_de': pawsx_de_eval_dataset,
|
1140 |
+
'pawsx_en': pawsx_en_eval_dataset,
|
1141 |
+
'nli_anli_entail_3hn': de_anli_entail_3hn_eval_ds,
|
1142 |
+
'nli_fever_entail_3hn': de_fever_entail_3hn_eval_ds,
|
1143 |
+
'nli_ling_entail_3hn': de_ling_entail_3hn_eval_ds,
|
1144 |
+
'nli_mnli_entail_3hn': de_mnli_entail_3hn_eval_ds,
|
1145 |
+
'nli_wanli_entail_3hn': de_wanli_entail_3hn_eval_ds,
|
1146 |
+
#'nli_anli_entail_0hn': de_anli_entail_0hn_eval_ds,
|
1147 |
+
#'nli_fever_entail_0hn': de_fever_entail_0hn_eval_ds,
|
1148 |
+
#'nli_ling_entail_0hn': de_ling_entail_0hn_eval_ds,
|
1149 |
+
#'nli_mnli_entail_0hn': de_mnli_entail_0hn_eval_ds,
|
1150 |
+
#'nli_wanli_entail_0hn': de_wanli_entail_0hn_eval_ds,
|
1151 |
+
'nli_anli_transl_3hn': de_anli_transl_3hn_eval_ds,
|
1152 |
+
'nli_fever_transl_3hn': de_fever_transl_3hn_eval_ds,
|
1153 |
+
'nli_ling_transl_3hn': de_ling_transl_3hn_eval_ds,
|
1154 |
+
'nli_mnli_transl_3hn': de_mnli_transl_3hn_eval_ds,
|
1155 |
+
'nli_wanli_transl_3hn': de_wanli_transl_3hn_eval_ds,
|
1156 |
+
#'nli_anli_transl_0hn': de_anli_transl_0hn_eval_ds,
|
1157 |
+
#'nli_fever_transl_0hn': de_fever_transl_0hn_eval_ds,
|
1158 |
+
#'nli_ling_transl_0hn': de_ling_transl_0hn_eval_ds,
|
1159 |
+
#'nli_mnli_transl_0hn': de_mnli_transl_0hn_eval_ds,
|
1160 |
+
#'nli_wanli_transl_0hn': de_wanli_transl_0hn_eval_ds,
|
1161 |
+
'jina_ai_3en': jina_ai_ps_eval_3en,
|
1162 |
+
'jina_ai_ende': jina_ai_ps_eval_en_de,
|
1163 |
+
'jina_ai_dede': jina_ai_ps_eval_de_de,
|
1164 |
+
'polyglot_de': polyglot_de_eval_dataset,
|
1165 |
+
'polyglot_en': polyglot_en_eval_dataset,
|
1166 |
+
'tilde_EESC': tilde_EESC_eval_dataset,
|
1167 |
+
#'tilde_RAPID': tilde_RAPID_eval_dataset,
|
1168 |
+
'miracl_de_3hn': miracl_de_eval_dataset,
|
1169 |
+
'miracl_de_0hn': miracl_de_0hn_eval_dataset,
|
1170 |
+
})
|
1171 |
+
#
|
1172 |
+
train_dataset.save_to_disk("base_datasets/train_dataset")
|
1173 |
+
eval_dataset.save_to_disk("base_datasets/eval_dataset")
|
1174 |
+
#
|
1175 |
+
end_time = timer()
|
1176 |
+
print('Time for preprocessing (minutes): '+str(round((end_time - start_time)/60, 3))) # the cheapest full timer one can get.
|
1177 |
+
# The `train_test_split` calls have put a lot of the datasets in memory, while we want it to just be on disk
|
1178 |
+
# So we're calling quit() here. Running the script again will load the datasets from disk.
|
1179 |
+
quit()
|
1180 |
+
|
1181 |
+
def main():
|
1182 |
+
# 1. Load a model to finetune with 2. (Optional) model card data
|
1183 |
+
static_embedding = StaticEmbedding(AutoTokenizer.from_pretrained(f"{tokenizer_model}"), embedding_dim=2048)
|
1184 |
+
model = SentenceTransformer(
|
1185 |
+
modules=[static_embedding],
|
1186 |
+
model_card_data=SentenceTransformerModelCardData(
|
1187 |
+
language="de, en",
|
1188 |
+
license="eupl-1.2",
|
1189 |
+
model_name=f"A static embedding model tokenized with {tokenizer_model} and mainly built on DE/EN-datasets.",
|
1190 |
+
),
|
1191 |
+
)
|
1192 |
+
#
|
1193 |
+
# 3. Set up training & evaluation datasets - each dataset is trained with MNRL (with MRL)
|
1194 |
+
train_dataset, eval_dataset = load_train_eval_datasets()
|
1195 |
+
print(train_dataset)
|
1196 |
+
#
|
1197 |
+
# 4. Define a loss function
|
1198 |
+
# sadly at the moment neither CachedMultipleNegativesRankingLoss or GISTEmbedLoss work with StaticEmbedding.
|
1199 |
+
loss = MultipleNegativesRankingLoss(model)
|
1200 |
+
loss = MatryoshkaLoss(model, loss, matryoshka_dims=[32, 64, 128, 256, 512, 1024, 2048])
|
1201 |
+
#
|
1202 |
+
# 5. (Optional) Specify training arguments
|
1203 |
+
# check for GPU support (using already loaded tensorflow)
|
1204 |
+
if len(tf.config.list_physical_devices('GPU')) > 0:
|
1205 |
+
fp16=True
|
1206 |
+
bf16=False
|
1207 |
+
else:
|
1208 |
+
fp16=False
|
1209 |
+
bf16=True
|
1210 |
+
## manual override
|
1211 |
+
#fp16=False
|
1212 |
+
#bf16=False
|
1213 |
+
run_name = f"{sts_basename}-v{version}"
|
1214 |
+
args = SentenceTransformerTrainingArguments(
|
1215 |
+
# Required parameter:
|
1216 |
+
output_dir=f"models/{run_name}",
|
1217 |
+
# Optional training parameters:
|
1218 |
+
num_train_epochs=1, # original 1 - if 2 epochs deliver worse results, it's already overfitting.
|
1219 |
+
per_device_train_batch_size=1024 * 4, # original 2048 - suggestions are 16384 (but beware of the GPU-RAM(!))
|
1220 |
+
per_device_eval_batch_size=1024 * 4, # original 2048
|
1221 |
+
learning_rate=2e-1,
|
1222 |
+
lr_scheduler_type="cosine", # instead of 'linear'
|
1223 |
+
warmup_ratio=0.1,
|
1224 |
+
fp16=fp16, # Set to False if you get an error that your GPU can't run on FP16
|
1225 |
+
bf16=bf16, # Set to True if you have a GPU that supports BF16
|
1226 |
+
batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
|
1227 |
+
multi_dataset_batch_sampler=MultiDatasetBatchSamplers.PROPORTIONAL,
|
1228 |
+
# Optional tracking/debugging parameters:
|
1229 |
+
eval_strategy="steps",
|
1230 |
+
eval_steps=500,
|
1231 |
+
save_strategy="steps",
|
1232 |
+
save_steps=1000,
|
1233 |
+
save_total_limit=2,
|
1234 |
+
logging_steps=500,
|
1235 |
+
logging_first_step=True,
|
1236 |
+
run_name=run_name, # Will be used in W&B if `wandb` is installed
|
1237 |
+
)
|
1238 |
+
#
|
1239 |
+
# 6. Create a trainer & train
|
1240 |
+
trainer = SentenceTransformerTrainer(
|
1241 |
+
model=model,
|
1242 |
+
args=args,
|
1243 |
+
train_dataset=train_dataset,
|
1244 |
+
eval_dataset=eval_dataset,
|
1245 |
+
loss=loss,
|
1246 |
+
)
|
1247 |
+
trainer.train()
|
1248 |
+
#
|
1249 |
+
# 7. Save the trained model
|
1250 |
+
model.save_pretrained(f"models/{run_name}/final")
|
1251 |
+
#
|
1252 |
+
# 8. (Optional) Push it to the Hugging Face Hub
|
1253 |
+
#model.push_to_hub(run_name, private=True)
|
1254 |
+
#
|
1255 |
+
# 9. Quick testing the model with NanoBEIR
|
1256 |
+
## found at: https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#nanobeirevaluator
|
1257 |
+
evaluator = NanoBEIREvaluator(show_progress_bar=True)
|
1258 |
+
results = evaluator(model)
|
1259 |
+
print('\n' + str(results[evaluator.primary_metric]))
|
1260 |
+
|
1261 |
+
# STARTER
|
1262 |
+
if __name__ == "__main__":
|
1263 |
+
start_time = timer()
|
1264 |
+
main()
|
1265 |
+
end_time = timer()
|
1266 |
+
print('Time for training (minutes): '+str(round((end_time - start_time)/60, 3))) # the cheapest full timer one can get.
|
1267 |
+
|