test_trainer_16_05

This model is a fine-tuned version of sismetanin/rubert-ru-sentiment-rusentiment on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2726
  • Accuracy: 0.8545
  • Precision: 0.8305
  • Recall: 0.8909
  • F1: 0.8596

Model description

A fine-tuned version of Ru-BERT, finetuned on sentiment analysis tasks. Two class sarcasm detection, trained on a manually annotated dataset of russian negative product reviews (3 annotators), partially tested on an ambiguious data.

Intended uses & limitations

More information needed

Training and evaluation data

A manually annotated dataset of russian negative product reviews (3 annotators)

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 29
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 96 0.6391 0.7091 0.6949 0.7455 0.7193
No log 2.0 192 0.5919 0.7545 0.7188 0.8364 0.7731
No log 3.0 288 0.6562 0.8364 0.7937 0.9091 0.8475
No log 4.0 384 1.2275 0.8 0.7391 0.9273 0.8226
No log 5.0 480 1.2310 0.8364 0.8033 0.8909 0.8448
0.3037 6.0 576 1.2434 0.8545 0.8305 0.8909 0.8596
0.3037 7.0 672 1.3317 0.8364 0.8033 0.8909 0.8448
0.3037 8.0 768 1.2726 0.8545 0.8305 0.8909 0.8596

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.21.1
Downloads last month
5
Safetensors
Model size
178M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for MaryObr/sarcasm-RuBERT

Finetuned
(1)
this model