mobileViTV2-128-2

This model is a fine-tuned version of apple/mobilevitv2-1.0-imagenet1k-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1494
  • Accuracy: 0.9480
  • F1: 0.9484
  • Precision: 0.9498
  • Recall: 0.9480

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.628 1.0 93 1.6205 0.1697 0.1607 0.1720 0.1697
1.6155 2.0 186 1.6120 0.2242 0.2119 0.2293 0.2242
1.6031 3.0 279 1.5941 0.2667 0.2650 0.2872 0.2667
1.5639 4.0 372 1.5756 0.3091 0.3022 0.3163 0.3091
1.525 5.0 465 1.5384 0.4 0.3949 0.4097 0.4
1.4892 6.0 558 1.4831 0.5091 0.4924 0.4945 0.5091
1.3605 7.0 651 1.3807 0.6 0.5801 0.5833 0.6
1.1423 8.0 744 1.2166 0.6242 0.5967 0.6139 0.6242
1.0801 9.0 837 1.0558 0.7030 0.6663 0.7190 0.7030
0.8504 10.0 930 0.8856 0.7697 0.7487 0.8081 0.7697
0.7659 11.0 1023 0.7253 0.8121 0.7954 0.8362 0.8121
0.547 12.0 1116 0.5812 0.8485 0.8418 0.8581 0.8485
0.5522 13.0 1209 0.4633 0.8970 0.8926 0.9078 0.8970
0.3583 14.0 1302 0.3797 0.9152 0.9119 0.9257 0.9152
0.3421 15.0 1395 0.3431 0.9273 0.9263 0.9379 0.9273
0.3624 16.0 1488 0.3010 0.9273 0.9265 0.9389 0.9273
0.2069 17.0 1581 0.2989 0.9152 0.9146 0.9260 0.9152
0.1639 18.0 1674 0.2797 0.9212 0.9205 0.9300 0.9212
0.2428 19.0 1767 0.2815 0.9273 0.9263 0.9379 0.9273
0.304 20.0 1860 0.2587 0.9333 0.9325 0.9432 0.9333
0.1349 21.0 1953 0.2617 0.9273 0.9266 0.9378 0.9273
0.2299 22.0 2046 0.2552 0.9333 0.9325 0.9432 0.9333
0.0894 23.0 2139 0.2560 0.9152 0.9149 0.9222 0.9152
0.1049 24.0 2232 0.2689 0.9152 0.9146 0.9226 0.9152
0.1201 25.0 2325 0.2921 0.9152 0.9144 0.9223 0.9152
0.1162 26.0 2418 0.3317 0.9212 0.9206 0.9283 0.9212
0.049 27.0 2511 0.2916 0.9273 0.9266 0.9346 0.9273
0.107 28.0 2604 0.2921 0.9273 0.9266 0.9346 0.9273
0.0521 29.0 2697 0.3267 0.9212 0.9207 0.9264 0.9212
0.1911 30.0 2790 0.3661 0.9091 0.9089 0.9147 0.9091
0.1636 31.0 2883 0.3444 0.9152 0.9147 0.9201 0.9152
0.0615 32.0 2976 0.3879 0.9212 0.9208 0.9277 0.9212
0.0581 33.0 3069 0.3606 0.9212 0.9207 0.9264 0.9212
0.1042 34.0 3162 0.3910 0.9333 0.9327 0.9404 0.9333
0.1468 35.0 3255 0.4503 0.9273 0.9266 0.9346 0.9273
0.0303 36.0 3348 0.4035 0.9152 0.9146 0.9207 0.9152
0.0512 37.0 3441 0.4157 0.9212 0.9207 0.9264 0.9212
0.0627 38.0 3534 0.4399 0.9273 0.9268 0.9323 0.9273
0.091 39.0 3627 0.4023 0.9273 0.9268 0.9323 0.9273
0.1877 40.0 3720 0.4463 0.9152 0.9148 0.9187 0.9152
0.072 41.0 3813 0.4729 0.9212 0.9207 0.9264 0.9212
0.0611 42.0 3906 0.5000 0.9152 0.9147 0.9201 0.9152
0.0308 43.0 3999 0.5051 0.9091 0.9087 0.9130 0.9091
0.0801 44.0 4092 0.5044 0.9273 0.9268 0.9323 0.9273
0.0548 45.0 4185 0.5312 0.9212 0.9211 0.9259 0.9212
0.054 46.0 4278 0.5439 0.8970 0.8965 0.9031 0.8970
0.036 47.0 4371 0.5276 0.8970 0.8963 0.9027 0.8970
0.0172 48.0 4464 0.5379 0.8970 0.8966 0.9003 0.8970
0.0573 49.0 4557 0.5380 0.9152 0.9146 0.9207 0.9152
0.0593 50.0 4650 0.5323 0.9091 0.9089 0.9113 0.9091
0.073 51.0 4743 0.5931 0.9030 0.9029 0.9110 0.9030
0.0959 52.0 4836 0.5285 0.9152 0.9148 0.9187 0.9152
0.0251 53.0 4929 0.5081 0.9152 0.9150 0.9173 0.9152
0.0129 54.0 5022 0.5469 0.9212 0.9207 0.9264 0.9212
0.0073 55.0 5115 0.5533 0.9273 0.9268 0.9323 0.9273
0.0922 56.0 5208 0.5499 0.9273 0.9268 0.9323 0.9273
0.0468 57.0 5301 0.5510 0.9273 0.9268 0.9323 0.9273
0.0217 58.0 5394 0.5798 0.9273 0.9268 0.9323 0.9273
0.0949 59.0 5487 0.5748 0.9273 0.9268 0.9323 0.9273
0.0569 60.0 5580 0.5744 0.9273 0.9268 0.9323 0.9273
0.0187 61.0 5673 0.5989 0.9273 0.9268 0.9323 0.9273
0.0333 62.0 5766 0.6353 0.9273 0.9268 0.9323 0.9273
0.002 63.0 5859 0.6033 0.9273 0.9268 0.9323 0.9273
0.0169 64.0 5952 0.6128 0.9273 0.9268 0.9323 0.9273
0.0303 65.0 6045 0.6143 0.9212 0.9207 0.9264 0.9212
0.0451 66.0 6138 0.6139 0.9273 0.9268 0.9323 0.9273
0.0291 67.0 6231 0.6058 0.9152 0.9148 0.9187 0.9152
0.0163 68.0 6324 0.6154 0.9212 0.9207 0.9264 0.9212
0.0181 69.0 6417 0.5810 0.9091 0.9089 0.9114 0.9091
0.0441 70.0 6510 0.6019 0.9152 0.9147 0.9203 0.9152
0.0395 71.0 6603 0.6018 0.9212 0.9207 0.9264 0.9212
0.0229 72.0 6696 0.6280 0.9091 0.9084 0.9152 0.9091
0.0509 73.0 6789 0.6442 0.9273 0.9268 0.9323 0.9273
0.0178 74.0 6882 0.6510 0.9273 0.9268 0.9323 0.9273
0.0048 75.0 6975 0.6086 0.9273 0.9268 0.9323 0.9273
0.0207 76.0 7068 0.6676 0.9212 0.9207 0.9264 0.9212
0.0354 77.0 7161 0.6055 0.9152 0.9148 0.9187 0.9152
0.0233 78.0 7254 0.6043 0.9152 0.9150 0.9173 0.9152
0.0522 79.0 7347 0.6388 0.9152 0.9148 0.9187 0.9152
0.0519 80.0 7440 0.6531 0.9273 0.9268 0.9323 0.9273
0.0129 81.0 7533 0.6346 0.9212 0.9209 0.9246 0.9212
0.0092 82.0 7626 0.6650 0.9273 0.9268 0.9323 0.9273
0.0289 83.0 7719 0.6390 0.9091 0.9089 0.9114 0.9091
0.0561 84.0 7812 0.6260 0.9091 0.9090 0.9103 0.9091
0.063 85.0 7905 0.6484 0.9212 0.9207 0.9263 0.9212
0.0372 86.0 7998 0.6375 0.9273 0.9268 0.9323 0.9273
0.0042 87.0 8091 0.6384 0.9152 0.9150 0.9173 0.9152
0.0659 88.0 8184 0.6734 0.9273 0.9268 0.9323 0.9273
0.016 89.0 8277 0.6275 0.9091 0.9089 0.9114 0.9091
0.0567 90.0 8370 0.6611 0.9212 0.9207 0.9264 0.9212
0.0467 91.0 8463 0.6528 0.9273 0.9268 0.9323 0.9273
0.0337 92.0 8556 0.6726 0.9273 0.9268 0.9323 0.9273
0.0159 93.0 8649 0.6528 0.9212 0.9207 0.9264 0.9212
0.1206 94.0 8742 0.6997 0.9273 0.9268 0.9323 0.9273
0.051 95.0 8835 0.6729 0.9152 0.9150 0.9173 0.9152
0.0459 96.0 8928 0.6691 0.9212 0.9209 0.9246 0.9212
0.0338 97.0 9021 0.6332 0.9212 0.9207 0.9264 0.9212
0.0823 98.0 9114 0.6550 0.9273 0.9268 0.9323 0.9273
0.0259 99.0 9207 0.6553 0.9212 0.9209 0.9246 0.9212
0.2724 100.0 9300 0.6473 0.9273 0.9268 0.9323 0.9273

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
15
Safetensors
Model size
4.41M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Master-Rapha7/mobileViTV2-128-2

Finetuned
(10)
this model