mobileViTV2-64
This model is a fine-tuned version of apple/mobilevitv2-1.0-imagenet1k-256 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3307
- Accuracy: 0.9106
- F1: 0.9093
- Precision: 0.9118
- Recall: 0.9106
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
1.6065 | 1.0 | 364 | 1.6103 | 0.1860 | 0.1866 | 0.1893 | 0.1860 |
1.5721 | 2.0 | 728 | 1.5804 | 0.2851 | 0.2857 | 0.2889 | 0.2851 |
1.4793 | 3.0 | 1092 | 1.5111 | 0.4229 | 0.4057 | 0.4006 | 0.4229 |
1.316 | 4.0 | 1456 | 1.2841 | 0.5028 | 0.4652 | 0.5157 | 0.5028 |
1.1397 | 5.0 | 1820 | 1.0520 | 0.5909 | 0.5474 | 0.6502 | 0.5909 |
0.8639 | 6.0 | 2184 | 0.8194 | 0.7163 | 0.6970 | 0.7325 | 0.7163 |
0.7371 | 7.0 | 2548 | 0.6773 | 0.7796 | 0.7711 | 0.7927 | 0.7796 |
0.6451 | 8.0 | 2912 | 0.5546 | 0.8292 | 0.8258 | 0.8334 | 0.8292 |
0.5299 | 9.0 | 3276 | 0.4800 | 0.8485 | 0.8461 | 0.8477 | 0.8485 |
0.387 | 10.0 | 3640 | 0.4091 | 0.8760 | 0.8737 | 0.8759 | 0.8760 |
0.3903 | 11.0 | 4004 | 0.3547 | 0.8884 | 0.8867 | 0.8887 | 0.8884 |
0.3513 | 12.0 | 4368 | 0.3207 | 0.9008 | 0.8983 | 0.9038 | 0.9008 |
0.3145 | 13.0 | 4732 | 0.3213 | 0.8967 | 0.8939 | 0.9009 | 0.8967 |
0.1838 | 14.0 | 5096 | 0.3013 | 0.8939 | 0.8924 | 0.8941 | 0.8939 |
0.3438 | 15.0 | 5460 | 0.3229 | 0.8857 | 0.8843 | 0.8850 | 0.8857 |
0.1913 | 16.0 | 5824 | 0.2568 | 0.9174 | 0.9159 | 0.9191 | 0.9174 |
0.2078 | 17.0 | 6188 | 0.2609 | 0.9187 | 0.9169 | 0.9206 | 0.9187 |
0.2061 | 18.0 | 6552 | 0.2811 | 0.9077 | 0.9061 | 0.9076 | 0.9077 |
0.2806 | 19.0 | 6916 | 0.2536 | 0.9242 | 0.9230 | 0.9260 | 0.9242 |
0.2495 | 20.0 | 7280 | 0.2881 | 0.9091 | 0.9076 | 0.9094 | 0.9091 |
0.0361 | 21.0 | 7644 | 0.2875 | 0.9311 | 0.9301 | 0.9331 | 0.9311 |
0.1811 | 22.0 | 8008 | 0.3067 | 0.9063 | 0.9050 | 0.9056 | 0.9063 |
0.1129 | 23.0 | 8372 | 0.2996 | 0.9050 | 0.9047 | 0.9053 | 0.9050 |
0.1138 | 24.0 | 8736 | 0.2970 | 0.9063 | 0.9060 | 0.9066 | 0.9063 |
0.3135 | 25.0 | 9100 | 0.3723 | 0.8967 | 0.8968 | 0.8972 | 0.8967 |
0.0828 | 26.0 | 9464 | 0.3574 | 0.9063 | 0.9060 | 0.9059 | 0.9063 |
0.0783 | 27.0 | 9828 | 0.4087 | 0.8939 | 0.8926 | 0.8926 | 0.8939 |
0.051 | 28.0 | 10192 | 0.3713 | 0.9063 | 0.9060 | 0.9068 | 0.9063 |
0.0744 | 29.0 | 10556 | 0.4470 | 0.8953 | 0.8951 | 0.8958 | 0.8953 |
0.0814 | 30.0 | 10920 | 0.4289 | 0.9077 | 0.9085 | 0.9099 | 0.9077 |
0.131 | 31.0 | 11284 | 0.4600 | 0.9008 | 0.8996 | 0.8997 | 0.9008 |
0.0245 | 32.0 | 11648 | 0.4818 | 0.8981 | 0.8978 | 0.8977 | 0.8981 |
0.0541 | 33.0 | 12012 | 0.4678 | 0.9050 | 0.9043 | 0.9040 | 0.9050 |
0.1011 | 34.0 | 12376 | 0.5298 | 0.8994 | 0.8985 | 0.8991 | 0.8994 |
0.17 | 35.0 | 12740 | 0.5093 | 0.9036 | 0.9026 | 0.9024 | 0.9036 |
0.0892 | 36.0 | 13104 | 0.5018 | 0.9063 | 0.9050 | 0.9050 | 0.9063 |
0.0246 | 37.0 | 13468 | 0.5520 | 0.9077 | 0.9058 | 0.9061 | 0.9077 |
0.0564 | 38.0 | 13832 | 0.5493 | 0.9077 | 0.9075 | 0.9077 | 0.9077 |
0.0817 | 39.0 | 14196 | 0.5607 | 0.9091 | 0.9084 | 0.9081 | 0.9091 |
0.0056 | 40.0 | 14560 | 0.5990 | 0.8939 | 0.8947 | 0.8961 | 0.8939 |
0.0653 | 41.0 | 14924 | 0.5870 | 0.9146 | 0.9136 | 0.9136 | 0.9146 |
0.1649 | 42.0 | 15288 | 0.5882 | 0.9050 | 0.9040 | 0.9039 | 0.9050 |
0.1057 | 43.0 | 15652 | 0.5924 | 0.9008 | 0.8999 | 0.9002 | 0.9008 |
0.0859 | 44.0 | 16016 | 0.5830 | 0.8994 | 0.8994 | 0.8999 | 0.8994 |
0.1809 | 45.0 | 16380 | 0.6357 | 0.8953 | 0.8939 | 0.8936 | 0.8953 |
0.1285 | 46.0 | 16744 | 0.6617 | 0.8967 | 0.8965 | 0.8975 | 0.8967 |
0.1018 | 47.0 | 17108 | 0.6006 | 0.9050 | 0.9044 | 0.9042 | 0.9050 |
0.0091 | 48.0 | 17472 | 0.5762 | 0.9091 | 0.9090 | 0.9094 | 0.9091 |
0.0368 | 49.0 | 17836 | 0.6097 | 0.9077 | 0.9067 | 0.9071 | 0.9077 |
0.0585 | 50.0 | 18200 | 0.6059 | 0.9063 | 0.9059 | 0.9061 | 0.9063 |
0.0373 | 51.0 | 18564 | 0.6621 | 0.8953 | 0.8953 | 0.8963 | 0.8953 |
0.1672 | 52.0 | 18928 | 0.6081 | 0.9022 | 0.9020 | 0.9019 | 0.9022 |
0.0344 | 53.0 | 19292 | 0.6145 | 0.8994 | 0.9002 | 0.9011 | 0.8994 |
0.0727 | 54.0 | 19656 | 0.6106 | 0.9036 | 0.9034 | 0.9034 | 0.9036 |
0.1997 | 55.0 | 20020 | 0.6037 | 0.9091 | 0.9082 | 0.9090 | 0.9091 |
0.0437 | 56.0 | 20384 | 0.5835 | 0.9105 | 0.9100 | 0.9105 | 0.9105 |
0.0263 | 57.0 | 20748 | 0.6032 | 0.9063 | 0.9062 | 0.9064 | 0.9063 |
0.056 | 58.0 | 21112 | 0.5828 | 0.9105 | 0.9101 | 0.9102 | 0.9105 |
0.0422 | 59.0 | 21476 | 0.6179 | 0.9105 | 0.9111 | 0.9129 | 0.9105 |
0.0377 | 60.0 | 21840 | 0.6400 | 0.8981 | 0.8997 | 0.9027 | 0.8981 |
0.1162 | 61.0 | 22204 | 0.5841 | 0.9105 | 0.9106 | 0.9108 | 0.9105 |
0.0407 | 62.0 | 22568 | 0.6017 | 0.9063 | 0.9064 | 0.9067 | 0.9063 |
0.0443 | 63.0 | 22932 | 0.6064 | 0.9036 | 0.9031 | 0.9029 | 0.9036 |
0.089 | 64.0 | 23296 | 0.6250 | 0.9008 | 0.9011 | 0.9018 | 0.9008 |
0.0971 | 65.0 | 23660 | 0.6729 | 0.9022 | 0.9011 | 0.9018 | 0.9022 |
0.046 | 66.0 | 24024 | 0.6445 | 0.9063 | 0.9060 | 0.9062 | 0.9063 |
0.0387 | 67.0 | 24388 | 0.6070 | 0.9036 | 0.9039 | 0.9046 | 0.9036 |
0.0709 | 68.0 | 24752 | 0.5890 | 0.9132 | 0.9131 | 0.9132 | 0.9132 |
0.0273 | 69.0 | 25116 | 0.6484 | 0.9008 | 0.9001 | 0.9007 | 0.9008 |
0.1951 | 70.0 | 25480 | 0.6336 | 0.9077 | 0.9075 | 0.9075 | 0.9077 |
0.0569 | 71.0 | 25844 | 0.6546 | 0.9105 | 0.9104 | 0.9105 | 0.9105 |
0.1145 | 72.0 | 26208 | 0.6964 | 0.9036 | 0.9026 | 0.9027 | 0.9036 |
0.0352 | 73.0 | 26572 | 0.6657 | 0.9118 | 0.9114 | 0.9115 | 0.9118 |
0.0375 | 74.0 | 26936 | 0.6417 | 0.9050 | 0.9054 | 0.9059 | 0.9050 |
0.0351 | 75.0 | 27300 | 0.6812 | 0.9091 | 0.9077 | 0.9081 | 0.9091 |
0.0675 | 76.0 | 27664 | 0.6445 | 0.9105 | 0.9100 | 0.9103 | 0.9105 |
0.0418 | 77.0 | 28028 | 0.7359 | 0.9091 | 0.9073 | 0.9084 | 0.9091 |
0.0353 | 78.0 | 28392 | 0.6701 | 0.9022 | 0.9021 | 0.9022 | 0.9022 |
0.0221 | 79.0 | 28756 | 0.6607 | 0.9036 | 0.9039 | 0.9051 | 0.9036 |
0.2435 | 80.0 | 29120 | 0.6487 | 0.9118 | 0.9115 | 0.9114 | 0.9118 |
0.0362 | 81.0 | 29484 | 0.7711 | 0.9077 | 0.9060 | 0.9064 | 0.9077 |
0.0116 | 82.0 | 29848 | 0.6276 | 0.9063 | 0.9067 | 0.9073 | 0.9063 |
0.001 | 83.0 | 30212 | 0.6564 | 0.9022 | 0.9020 | 0.9022 | 0.9022 |
0.013 | 84.0 | 30576 | 0.6576 | 0.9077 | 0.9071 | 0.9072 | 0.9077 |
0.0183 | 85.0 | 30940 | 0.7075 | 0.9036 | 0.9033 | 0.9038 | 0.9036 |
0.0367 | 86.0 | 31304 | 0.7168 | 0.9118 | 0.9100 | 0.9108 | 0.9118 |
0.027 | 87.0 | 31668 | 0.6892 | 0.9132 | 0.9133 | 0.9143 | 0.9132 |
0.015 | 88.0 | 32032 | 0.6886 | 0.9077 | 0.9069 | 0.9069 | 0.9077 |
0.0435 | 89.0 | 32396 | 0.6863 | 0.9008 | 0.9009 | 0.9012 | 0.9008 |
0.0049 | 90.0 | 32760 | 0.6883 | 0.9077 | 0.9072 | 0.9069 | 0.9077 |
0.1041 | 91.0 | 33124 | 0.7216 | 0.9008 | 0.9000 | 0.9002 | 0.9008 |
0.0465 | 92.0 | 33488 | 0.7032 | 0.9022 | 0.9021 | 0.9026 | 0.9022 |
0.0221 | 93.0 | 33852 | 0.7131 | 0.9036 | 0.9025 | 0.9023 | 0.9036 |
0.0091 | 94.0 | 34216 | 0.6886 | 0.8953 | 0.8963 | 0.8976 | 0.8953 |
0.0322 | 95.0 | 34580 | 0.7213 | 0.9022 | 0.9020 | 0.9024 | 0.9022 |
0.0348 | 96.0 | 34944 | 0.7005 | 0.9022 | 0.9016 | 0.9014 | 0.9022 |
0.0357 | 97.0 | 35308 | 0.7131 | 0.8967 | 0.8971 | 0.8980 | 0.8967 |
0.0363 | 98.0 | 35672 | 0.6947 | 0.9118 | 0.9112 | 0.9114 | 0.9118 |
0.0249 | 99.0 | 36036 | 0.6783 | 0.9132 | 0.9126 | 0.9126 | 0.9132 |
0.0179 | 100.0 | 36400 | 0.6614 | 0.9036 | 0.9037 | 0.9039 | 0.9036 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.4.0
- Tokenizers 0.21.0
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Master-Rapha7/mobileViTV2-64
Base model
apple/mobilevitv2-1.0-imagenet1k-256