Built with Axolotl

See axolotl config

axolotl version: 0.5.2

base_model: ibm-granite/granite-3.1-8b-instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

resize_token_embeddings_to_32x: true
load_in_8bit: true
load_in_4bit: false
strict: false

datasets:
- path: bfcl_training_data.jsonl
  type: chat_template
  chat_template: tokenizer_default
  field_messages: conversations
  message_field_role: role
  message_field_content: value
dataset_prepared_path: last_run_prepared_sft

val_set_size: 0
sequence_len: 16384
sample_packing: false
pad_to_sequence_len: true
eval_sample_packing: false
output_dir: granite-bfcl-plans-3.1-8b-lora

wandb_project: null
wandb_entity: null
wandb_watch: null
wandb_name: null
wandb_log_model: null

adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

gradient_accumulation_steps: 8
micro_batch_size: 1
eval_batch_size: 1
num_epochs: 7
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 1e-05

max_grad_norm: 1.0
logging_steps: 10

train_on_inputs: false
group_by_length: false

bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
xformers_attention:
flash_attention: true
warmup_ratio: 0.05
eval_steps:
save_strategy: epoch
eval_table_size:
num_processes: 8
deepspeed:
weight_decay: 0.0

granite-bfcl-plans-3.1-8b-lora

This model is a fine-tuned version of ibm-granite/granite-3.1-8b-instruct on the bfcl_training_data.jsonl dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 8
  • optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 4
  • num_epochs: 7

Training results

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.3
  • Pytorch 2.3.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
3
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for MatVet/granite-bfcl-plans-3.1-8b-lora

Adapter
(3)
this model