spa-eng-pos-tagging-v5
This model is a fine-tuned version of distilbert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3191
- Accuracy: 0.9175
- Precision: 0.9166
- Recall: 0.8431
- F1: 0.8483
- Hamming Loss: 0.0825
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Hamming Loss |
---|---|---|---|---|---|---|---|---|
1.0059 | 1.0 | 1744 | 0.8050 | 0.7117 | 0.7074 | 0.6280 | 0.6300 | 0.2883 |
0.6286 | 2.0 | 3488 | 0.5338 | 0.8024 | 0.8121 | 0.7148 | 0.7270 | 0.1976 |
0.4449 | 3.0 | 5232 | 0.4519 | 0.8435 | 0.8300 | 0.7747 | 0.7700 | 0.1565 |
0.3647 | 4.0 | 6976 | 0.3849 | 0.8618 | 0.8551 | 0.7900 | 0.7907 | 0.1382 |
0.2968 | 5.0 | 8720 | 0.3579 | 0.8772 | 0.8769 | 0.8053 | 0.8088 | 0.1228 |
0.255 | 6.0 | 10464 | 0.3298 | 0.8868 | 0.8756 | 0.8179 | 0.8152 | 0.1132 |
0.2025 | 7.0 | 12208 | 0.3245 | 0.8941 | 0.8917 | 0.8224 | 0.8251 | 0.1059 |
0.176 | 8.0 | 13952 | 0.3324 | 0.8980 | 0.8970 | 0.8260 | 0.8293 | 0.1020 |
0.1399 | 9.0 | 15696 | 0.3376 | 0.9038 | 0.9019 | 0.8280 | 0.8331 | 0.0962 |
0.1198 | 10.0 | 17440 | 0.3251 | 0.9108 | 0.9075 | 0.8379 | 0.8412 | 0.0892 |
0.0973 | 11.0 | 19184 | 0.3191 | 0.9175 | 0.9166 | 0.8431 | 0.8483 | 0.0825 |
0.0763 | 12.0 | 20928 | 0.3262 | 0.9192 | 0.9166 | 0.8464 | 0.8501 | 0.0808 |
Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Tokenizers 0.13.3
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.