SentenceTransformer based on Qwen/Qwen3-0.6B-Base
This is a sentence-transformers model finetuned from Qwen/Qwen3-0.6B-Base. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Qwen/Qwen3-0.6B-Base
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: Qwen3Model
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
"The ratio of an object's mass to its volume is its",
'density.',
'500 m',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 725,795 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 3 tokens
- mean: 36.99 tokens
- max: 128 tokens
- min: 1 tokens
- mean: 4.56 tokens
- max: 34 tokens
- Samples:
sentence_0 sentence_1 A balance can measure the weight of
sugar
The average monthly salary of 20 employees in an organisation is Rs. 1500. If the manager's salary is added, then the average salary increases by Rs. 100. What is the manager's monthly salary?
Rs.3600
When a baby shakes a rattle, it makes a noise. Which form of energy was changed to sound energy?
mechanical
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0110 | 500 | 1.3593 |
0.0220 | 1000 | 0.8335 |
0.0331 | 1500 | 0.7774 |
0.0441 | 2000 | 0.7507 |
0.0551 | 2500 | 0.7108 |
0.0661 | 3000 | 0.6946 |
0.0772 | 3500 | 0.6644 |
0.0882 | 4000 | 0.621 |
0.0992 | 4500 | 0.6124 |
0.1102 | 5000 | 0.576 |
0.1212 | 5500 | 0.5787 |
0.1323 | 6000 | 0.5502 |
0.1433 | 6500 | 0.5653 |
0.1543 | 7000 | 0.5315 |
0.1653 | 7500 | 0.5198 |
0.1764 | 8000 | 0.5114 |
0.1874 | 8500 | 0.4775 |
0.1984 | 9000 | 0.4803 |
0.2094 | 9500 | 0.4876 |
0.2204 | 10000 | 0.4824 |
0.2315 | 10500 | 0.4587 |
0.2425 | 11000 | 0.4521 |
0.2535 | 11500 | 0.4565 |
0.2645 | 12000 | 0.448 |
0.2756 | 12500 | 0.4475 |
0.2866 | 13000 | 0.4313 |
0.2976 | 13500 | 0.4226 |
0.3086 | 14000 | 0.4079 |
0.3196 | 14500 | 0.3869 |
0.3307 | 15000 | 0.4001 |
0.3417 | 15500 | 0.3815 |
0.3527 | 16000 | 0.3769 |
0.3637 | 16500 | 0.3526 |
0.3748 | 17000 | 0.3839 |
0.3858 | 17500 | 0.3647 |
0.3968 | 18000 | 0.3616 |
0.4078 | 18500 | 0.3615 |
0.4188 | 19000 | 0.3592 |
0.4299 | 19500 | 0.322 |
0.4409 | 20000 | 0.3352 |
0.4519 | 20500 | 0.3228 |
0.4629 | 21000 | 0.3213 |
0.4740 | 21500 | 0.3129 |
0.4850 | 22000 | 0.3086 |
0.4960 | 22500 | 0.3011 |
0.5070 | 23000 | 0.3112 |
0.5180 | 23500 | 0.308 |
0.5291 | 24000 | 0.3002 |
0.5401 | 24500 | 0.2805 |
0.5511 | 25000 | 0.2809 |
0.5621 | 25500 | 0.2666 |
0.5732 | 26000 | 0.2772 |
0.5842 | 26500 | 0.2783 |
0.5952 | 27000 | 0.2704 |
0.6062 | 27500 | 0.2696 |
0.6172 | 28000 | 0.2667 |
0.6283 | 28500 | 0.2561 |
0.6393 | 29000 | 0.2546 |
0.6503 | 29500 | 0.2491 |
0.6613 | 30000 | 0.2405 |
0.6724 | 30500 | 0.2376 |
0.6834 | 31000 | 0.2236 |
0.6944 | 31500 | 0.246 |
0.7054 | 32000 | 0.2418 |
0.7164 | 32500 | 0.2271 |
0.7275 | 33000 | 0.2308 |
0.7385 | 33500 | 0.2162 |
0.7495 | 34000 | 0.2135 |
0.7605 | 34500 | 0.2157 |
0.7716 | 35000 | 0.2177 |
0.7826 | 35500 | 0.2242 |
0.7936 | 36000 | 0.22 |
0.8046 | 36500 | 0.2026 |
0.8156 | 37000 | 0.1988 |
0.8267 | 37500 | 0.1845 |
0.8377 | 38000 | 0.1955 |
0.8487 | 38500 | 0.2115 |
0.8597 | 39000 | 0.2026 |
0.8708 | 39500 | 0.1861 |
0.8818 | 40000 | 0.1882 |
0.8928 | 40500 | 0.1861 |
0.9038 | 41000 | 0.1921 |
0.9148 | 41500 | 0.1778 |
0.9259 | 42000 | 0.1779 |
0.9369 | 42500 | 0.1782 |
0.9479 | 43000 | 0.1748 |
0.9589 | 43500 | 0.168 |
0.9700 | 44000 | 0.1717 |
0.9810 | 44500 | 0.1699 |
0.9920 | 45000 | 0.1697 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.52.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 37
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Matjac5/MNLP_M3_rag_model_old
Base model
Qwen/Qwen3-0.6B-Base