vit-base-patch16-224-finetuned-on-all-affectnet_short

This model is a fine-tuned version of google/vit-base-patch16-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0520
  • Accuracy: 0.7259
  • Precision: 0.7293
  • Recall: 0.7259
  • F1: 0.7255

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 14
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.5399 1.0 91 1.4698 0.5097 0.5079 0.5097 0.4827
1.284 2.0 182 1.2026 0.6409 0.6514 0.6409 0.6226
1.2259 3.0 273 1.1367 0.6722 0.6749 0.6722 0.6694
1.1663 4.0 364 1.1086 0.6838 0.6903 0.6838 0.6814
1.1401 5.0 455 1.0782 0.7055 0.7070 0.7055 0.7042
1.1229 6.0 546 1.0734 0.7055 0.7093 0.7055 0.7036
1.0929 7.0 637 1.0674 0.7120 0.7147 0.7120 0.7099
1.0826 8.0 728 1.0601 0.7210 0.7226 0.7210 0.7191
1.0414 9.0 819 1.0558 0.7203 0.7211 0.7203 0.7196
1.0649 10.0 910 1.0499 0.7179 0.7194 0.7179 0.7175
1.0554 11.0 1001 1.0520 0.7259 0.7293 0.7259 0.7255
1.0496 12.0 1092 1.0466 0.7210 0.7212 0.7210 0.7204
1.064 13.0 1183 1.0502 0.7220 0.7235 0.7220 0.7211
1.0386 14.0 1274 1.0475 0.7206 0.7208 0.7206 0.7200

Framework versions

  • Transformers 4.29.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
43
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Space using Mauregato/vit-base-patch16-224-finetuned-on-all-affectnet_short 1