metadata
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Военная кафедра
- text: Какие льготы есть у выпускников колледжа?
- text: Какие этапы включает приемная кампания?
- text: Сколько продлится приемная кампания
- text: Какие требования для поступления в ВУЦ?
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: cointegrated/rubert-tiny2
model-index:
- name: SetFit with cointegrated/rubert-tiny2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 1
name: Accuracy
SetFit with cointegrated/rubert-tiny2
This is a SetFit model that can be used for Text Classification. This SetFit model uses cointegrated/rubert-tiny2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: cointegrated/rubert-tiny2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 2048 tokens
- Number of Classes: 7 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
3 |
|
2 |
|
1 |
|
0 |
|
4 |
|
6 |
|
5 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 1.0 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Maxim01/Intent_Classification_Test")
# Run inference
preds = model("Военная кафедра")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 5.3333 | 8 |
Label | Training Sample Count |
---|---|
0 | 9 |
1 | 11 |
2 | 6 |
3 | 9 |
4 | 10 |
5 | 11 |
6 | 10 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0030 | 1 | 0.1199 | - |
0.1515 | 50 | 0.1727 | - |
0.3030 | 100 | 0.0936 | - |
0.4545 | 150 | 0.0599 | - |
0.6061 | 200 | 0.0529 | - |
0.7576 | 250 | 0.0436 | - |
0.9091 | 300 | 0.0359 | - |
Framework Versions
- Python: 3.11.12
- SetFit: 1.1.2
- Sentence Transformers: 3.4.1
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Datasets: 3.5.1
- Tokenizers: 0.21.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}