ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run3_AugV5_k1_task3_organization
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5317
- Qwk: -0.0901
- Mse: 1.5317
- Rmse: 1.2376
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.6667 | 2 | 3.7150 | -0.0057 | 3.7150 | 1.9274 |
No log | 1.3333 | 4 | 2.2429 | 0.0431 | 2.2429 | 1.4976 |
No log | 2.0 | 6 | 1.6550 | 0.0147 | 1.6550 | 1.2865 |
No log | 2.6667 | 8 | 1.5632 | -0.0051 | 1.5632 | 1.2503 |
No log | 3.3333 | 10 | 1.2145 | 0.0391 | 1.2145 | 1.1020 |
No log | 4.0 | 12 | 1.4622 | 0.0584 | 1.4622 | 1.2092 |
No log | 4.6667 | 14 | 1.3739 | -0.0245 | 1.3739 | 1.1721 |
No log | 5.3333 | 16 | 1.8290 | 0.0245 | 1.8290 | 1.3524 |
No log | 6.0 | 18 | 2.7398 | -0.0444 | 2.7398 | 1.6552 |
No log | 6.6667 | 20 | 2.4443 | 0.0085 | 2.4443 | 1.5634 |
No log | 7.3333 | 22 | 1.7095 | 0.0200 | 1.7095 | 1.3075 |
No log | 8.0 | 24 | 1.7826 | 0.0181 | 1.7826 | 1.3351 |
No log | 8.6667 | 26 | 2.3441 | -0.0350 | 2.3441 | 1.5311 |
No log | 9.3333 | 28 | 1.8005 | 0.0163 | 1.8005 | 1.3418 |
No log | 10.0 | 30 | 1.3685 | -0.0096 | 1.3685 | 1.1698 |
No log | 10.6667 | 32 | 1.5163 | -0.0756 | 1.5163 | 1.2314 |
No log | 11.3333 | 34 | 2.4190 | -0.0593 | 2.4190 | 1.5553 |
No log | 12.0 | 36 | 2.3929 | -0.0433 | 2.3929 | 1.5469 |
No log | 12.6667 | 38 | 1.9318 | -0.0404 | 1.9318 | 1.3899 |
No log | 13.3333 | 40 | 1.2396 | -0.0735 | 1.2396 | 1.1134 |
No log | 14.0 | 42 | 1.0659 | -0.0818 | 1.0659 | 1.0324 |
No log | 14.6667 | 44 | 1.1602 | -0.0352 | 1.1602 | 1.0771 |
No log | 15.3333 | 46 | 1.8322 | 0.0148 | 1.8322 | 1.3536 |
No log | 16.0 | 48 | 2.4496 | -0.0143 | 2.4496 | 1.5651 |
No log | 16.6667 | 50 | 2.2215 | -0.0286 | 2.2215 | 1.4905 |
No log | 17.3333 | 52 | 1.6471 | -0.0165 | 1.6471 | 1.2834 |
No log | 18.0 | 54 | 1.4077 | -0.0237 | 1.4077 | 1.1865 |
No log | 18.6667 | 56 | 1.4228 | -0.0237 | 1.4228 | 1.1928 |
No log | 19.3333 | 58 | 1.8944 | -0.0688 | 1.8944 | 1.3764 |
No log | 20.0 | 60 | 1.9516 | -0.0688 | 1.9516 | 1.3970 |
No log | 20.6667 | 62 | 1.5406 | -0.0366 | 1.5406 | 1.2412 |
No log | 21.3333 | 64 | 1.1813 | -0.0142 | 1.1813 | 1.0869 |
No log | 22.0 | 66 | 1.3253 | 0.0042 | 1.3253 | 1.1512 |
No log | 22.6667 | 68 | 1.7462 | -0.0458 | 1.7462 | 1.3215 |
No log | 23.3333 | 70 | 1.9611 | -0.0461 | 1.9611 | 1.4004 |
No log | 24.0 | 72 | 1.8019 | -0.0236 | 1.8019 | 1.3423 |
No log | 24.6667 | 74 | 1.6535 | -0.1064 | 1.6535 | 1.2859 |
No log | 25.3333 | 76 | 1.5697 | -0.0544 | 1.5697 | 1.2529 |
No log | 26.0 | 78 | 1.8363 | -0.0625 | 1.8363 | 1.3551 |
No log | 26.6667 | 80 | 2.1476 | -0.0633 | 2.1476 | 1.4655 |
No log | 27.3333 | 82 | 2.1876 | -0.0633 | 2.1876 | 1.4791 |
No log | 28.0 | 84 | 1.8772 | -0.0069 | 1.8772 | 1.3701 |
No log | 28.6667 | 86 | 1.3597 | -0.0288 | 1.3597 | 1.1661 |
No log | 29.3333 | 88 | 1.1790 | -0.0204 | 1.1790 | 1.0858 |
No log | 30.0 | 90 | 1.3102 | -0.0920 | 1.3102 | 1.1447 |
No log | 30.6667 | 92 | 1.5957 | -0.0230 | 1.5957 | 1.2632 |
No log | 31.3333 | 94 | 1.7821 | 0.0154 | 1.7821 | 1.3350 |
No log | 32.0 | 96 | 1.5949 | -0.0146 | 1.5949 | 1.2629 |
No log | 32.6667 | 98 | 1.6306 | -0.0080 | 1.6306 | 1.2769 |
No log | 33.3333 | 100 | 1.9167 | -0.0242 | 1.9167 | 1.3844 |
No log | 34.0 | 102 | 2.2213 | -0.0457 | 2.2213 | 1.4904 |
No log | 34.6667 | 104 | 2.0252 | -0.0443 | 2.0252 | 1.4231 |
No log | 35.3333 | 106 | 1.6688 | 0.0013 | 1.6688 | 1.2918 |
No log | 36.0 | 108 | 1.5543 | 0.0068 | 1.5543 | 1.2467 |
No log | 36.6667 | 110 | 1.4571 | -0.1150 | 1.4571 | 1.2071 |
No log | 37.3333 | 112 | 1.4384 | -0.0630 | 1.4384 | 1.1993 |
No log | 38.0 | 114 | 1.7029 | 0.0186 | 1.7029 | 1.3050 |
No log | 38.6667 | 116 | 1.7560 | 0.0365 | 1.7560 | 1.3251 |
No log | 39.3333 | 118 | 1.4946 | -0.0412 | 1.4946 | 1.2225 |
No log | 40.0 | 120 | 1.3933 | -0.0324 | 1.3933 | 1.1804 |
No log | 40.6667 | 122 | 1.4620 | -0.0412 | 1.4620 | 1.2091 |
No log | 41.3333 | 124 | 1.3784 | -0.0324 | 1.3784 | 1.1741 |
No log | 42.0 | 126 | 1.3684 | -0.0629 | 1.3684 | 1.1698 |
No log | 42.6667 | 128 | 1.4520 | -0.0443 | 1.4520 | 1.2050 |
No log | 43.3333 | 130 | 1.4436 | -0.0443 | 1.4436 | 1.2015 |
No log | 44.0 | 132 | 1.4337 | -0.0453 | 1.4337 | 1.1974 |
No log | 44.6667 | 134 | 1.4440 | -0.0453 | 1.4440 | 1.2017 |
No log | 45.3333 | 136 | 1.4290 | -0.0453 | 1.4290 | 1.1954 |
No log | 46.0 | 138 | 1.3906 | -0.0621 | 1.3906 | 1.1792 |
No log | 46.6667 | 140 | 1.3843 | -0.0344 | 1.3843 | 1.1766 |
No log | 47.3333 | 142 | 1.4342 | -0.0119 | 1.4342 | 1.1976 |
No log | 48.0 | 144 | 1.4955 | -0.0452 | 1.4955 | 1.2229 |
No log | 48.6667 | 146 | 1.5797 | -0.0452 | 1.5797 | 1.2569 |
No log | 49.3333 | 148 | 1.4263 | -0.0453 | 1.4263 | 1.1943 |
No log | 50.0 | 150 | 1.2363 | -0.0268 | 1.2363 | 1.1119 |
No log | 50.6667 | 152 | 1.2701 | 0.0025 | 1.2701 | 1.1270 |
No log | 51.3333 | 154 | 1.3753 | -0.0947 | 1.3753 | 1.1727 |
No log | 52.0 | 156 | 1.6379 | -0.0451 | 1.6379 | 1.2798 |
No log | 52.6667 | 158 | 1.7100 | -0.0681 | 1.7100 | 1.3077 |
No log | 53.3333 | 160 | 1.5299 | -0.0452 | 1.5299 | 1.2369 |
No log | 54.0 | 162 | 1.3191 | -0.0029 | 1.3191 | 1.1485 |
No log | 54.6667 | 164 | 1.2735 | -0.0297 | 1.2735 | 1.1285 |
No log | 55.3333 | 166 | 1.3827 | -0.0665 | 1.3827 | 1.1759 |
No log | 56.0 | 168 | 1.4652 | -0.0697 | 1.4652 | 1.2105 |
No log | 56.6667 | 170 | 1.5923 | -0.0712 | 1.5923 | 1.2619 |
No log | 57.3333 | 172 | 1.6058 | -0.0712 | 1.6058 | 1.2672 |
No log | 58.0 | 174 | 1.4698 | -0.0712 | 1.4698 | 1.2123 |
No log | 58.6667 | 176 | 1.4160 | -0.0966 | 1.4160 | 1.1900 |
No log | 59.3333 | 178 | 1.3308 | -0.0647 | 1.3308 | 1.1536 |
No log | 60.0 | 180 | 1.2144 | -0.0204 | 1.2144 | 1.1020 |
No log | 60.6667 | 182 | 1.1694 | -0.0187 | 1.1694 | 1.0814 |
No log | 61.3333 | 184 | 1.2197 | -0.0862 | 1.2197 | 1.1044 |
No log | 62.0 | 186 | 1.2461 | -0.0268 | 1.2461 | 1.1163 |
No log | 62.6667 | 188 | 1.3906 | -0.0942 | 1.3906 | 1.1792 |
No log | 63.3333 | 190 | 1.5419 | -0.0449 | 1.5419 | 1.2418 |
No log | 64.0 | 192 | 1.7031 | 0.0171 | 1.7031 | 1.3050 |
No log | 64.6667 | 194 | 1.8381 | 0.0349 | 1.8381 | 1.3558 |
No log | 65.3333 | 196 | 1.7873 | 0.0365 | 1.7873 | 1.3369 |
No log | 66.0 | 198 | 1.6840 | -0.0025 | 1.6840 | 1.2977 |
No log | 66.6667 | 200 | 1.6421 | -0.0025 | 1.6421 | 1.2814 |
No log | 67.3333 | 202 | 1.6158 | -0.0025 | 1.6158 | 1.2711 |
No log | 68.0 | 204 | 1.5262 | -0.0645 | 1.5262 | 1.2354 |
No log | 68.6667 | 206 | 1.4844 | -0.0860 | 1.4844 | 1.2183 |
No log | 69.3333 | 208 | 1.4413 | -0.0622 | 1.4413 | 1.2005 |
No log | 70.0 | 210 | 1.3663 | -0.0315 | 1.3663 | 1.1689 |
No log | 70.6667 | 212 | 1.2820 | -0.0550 | 1.2820 | 1.1322 |
No log | 71.3333 | 214 | 1.2990 | -0.0582 | 1.2990 | 1.1397 |
No log | 72.0 | 216 | 1.3979 | -0.0898 | 1.3979 | 1.1823 |
No log | 72.6667 | 218 | 1.5095 | -0.0440 | 1.5095 | 1.2286 |
No log | 73.3333 | 220 | 1.5965 | -0.0448 | 1.5965 | 1.2635 |
No log | 74.0 | 222 | 1.5875 | -0.0448 | 1.5875 | 1.2599 |
No log | 74.6667 | 224 | 1.5369 | -0.0431 | 1.5369 | 1.2397 |
No log | 75.3333 | 226 | 1.5201 | -0.0431 | 1.5201 | 1.2329 |
No log | 76.0 | 228 | 1.5008 | -0.0431 | 1.5008 | 1.2251 |
No log | 76.6667 | 230 | 1.5483 | -0.0440 | 1.5483 | 1.2443 |
No log | 77.3333 | 232 | 1.5814 | -0.0448 | 1.5814 | 1.2576 |
No log | 78.0 | 234 | 1.6552 | -0.0025 | 1.6552 | 1.2865 |
No log | 78.6667 | 236 | 1.6739 | -0.0025 | 1.6739 | 1.2938 |
No log | 79.3333 | 238 | 1.6989 | -0.0025 | 1.6989 | 1.3034 |
No log | 80.0 | 240 | 1.6782 | -0.0025 | 1.6782 | 1.2954 |
No log | 80.6667 | 242 | 1.6360 | -0.0025 | 1.6360 | 1.2791 |
No log | 81.3333 | 244 | 1.5600 | -0.0440 | 1.5600 | 1.2490 |
No log | 82.0 | 246 | 1.4731 | -0.0880 | 1.4731 | 1.2137 |
No log | 82.6667 | 248 | 1.4346 | -0.1192 | 1.4346 | 1.1978 |
No log | 83.3333 | 250 | 1.3932 | -0.1186 | 1.3932 | 1.1803 |
No log | 84.0 | 252 | 1.3963 | -0.1186 | 1.3963 | 1.1817 |
No log | 84.6667 | 254 | 1.4310 | -0.0908 | 1.4310 | 1.1963 |
No log | 85.3333 | 256 | 1.4471 | -0.0896 | 1.4471 | 1.2029 |
No log | 86.0 | 258 | 1.4580 | -0.0880 | 1.4580 | 1.2075 |
No log | 86.6667 | 260 | 1.4739 | -0.0880 | 1.4739 | 1.2140 |
No log | 87.3333 | 262 | 1.4917 | -0.0880 | 1.4917 | 1.2213 |
No log | 88.0 | 264 | 1.4888 | -0.0913 | 1.4888 | 1.2201 |
No log | 88.6667 | 266 | 1.4861 | -0.0913 | 1.4861 | 1.2191 |
No log | 89.3333 | 268 | 1.5024 | -0.0880 | 1.5024 | 1.2257 |
No log | 90.0 | 270 | 1.5094 | -0.0880 | 1.5094 | 1.2286 |
No log | 90.6667 | 272 | 1.5003 | -0.0896 | 1.5003 | 1.2249 |
No log | 91.3333 | 274 | 1.4941 | -0.0913 | 1.4941 | 1.2223 |
No log | 92.0 | 276 | 1.4922 | -0.0913 | 1.4922 | 1.2216 |
No log | 92.6667 | 278 | 1.4969 | -0.0913 | 1.4969 | 1.2235 |
No log | 93.3333 | 280 | 1.5022 | -0.0913 | 1.5022 | 1.2256 |
No log | 94.0 | 282 | 1.4975 | -0.0913 | 1.4975 | 1.2237 |
No log | 94.6667 | 284 | 1.5072 | -0.0913 | 1.5072 | 1.2277 |
No log | 95.3333 | 286 | 1.5210 | -0.0913 | 1.5210 | 1.2333 |
No log | 96.0 | 288 | 1.5242 | -0.0918 | 1.5242 | 1.2346 |
No log | 96.6667 | 290 | 1.5339 | -0.0901 | 1.5339 | 1.2385 |
No log | 97.3333 | 292 | 1.5380 | -0.0885 | 1.5380 | 1.2402 |
No log | 98.0 | 294 | 1.5389 | -0.0885 | 1.5389 | 1.2405 |
No log | 98.6667 | 296 | 1.5356 | -0.0901 | 1.5356 | 1.2392 |
No log | 99.3333 | 298 | 1.5331 | -0.0901 | 1.5331 | 1.2382 |
No log | 100.0 | 300 | 1.5317 | -0.0901 | 1.5317 | 1.2376 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for MayBashendy/ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run3_AugV5_k1_task3_organization
Base model
aubmindlab/bert-base-arabertv02