ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run3_AugV5_k2_task3_organization

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5363
  • Qwk: -0.0638
  • Mse: 1.5363
  • Rmse: 1.2395

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.4 2 3.6321 -0.0154 3.6321 1.9058
No log 0.8 4 2.0741 0.0672 2.0741 1.4402
No log 1.2 6 1.4775 -0.0503 1.4775 1.2155
No log 1.6 8 1.2624 -0.0247 1.2624 1.1236
No log 2.0 10 0.9762 0.0026 0.9762 0.9880
No log 2.4 12 1.2018 -0.1015 1.2018 1.0963
No log 2.8 14 1.1454 -0.0423 1.1454 1.0702
No log 3.2 16 1.0873 -0.0982 1.0873 1.0427
No log 3.6 18 1.4452 -0.1019 1.4452 1.2021
No log 4.0 20 0.9969 -0.0200 0.9969 0.9984
No log 4.4 22 0.7550 0.0334 0.7550 0.8689
No log 4.8 24 0.8287 0.1148 0.8287 0.9103
No log 5.2 26 1.4492 -0.0677 1.4492 1.2038
No log 5.6 28 1.7622 -0.0466 1.7622 1.3275
No log 6.0 30 1.1723 -0.0818 1.1723 1.0827
No log 6.4 32 0.9923 -0.0391 0.9923 0.9961
No log 6.8 34 1.3402 -0.0500 1.3402 1.1577
No log 7.2 36 2.4350 -0.0149 2.4350 1.5604
No log 7.6 38 2.3018 -0.0260 2.3018 1.5172
No log 8.0 40 1.5049 -0.0238 1.5049 1.2268
No log 8.4 42 1.3558 0.0437 1.3558 1.1644
No log 8.8 44 1.7981 0.0 1.7981 1.3409
No log 9.2 46 1.7801 -0.0189 1.7801 1.3342
No log 9.6 48 1.2429 -0.0797 1.2429 1.1149
No log 10.0 50 1.0549 -0.0408 1.0549 1.0271
No log 10.4 52 1.2963 -0.0146 1.2963 1.1386
No log 10.8 54 1.8325 -0.0625 1.8325 1.3537
No log 11.2 56 1.7623 -0.0403 1.7623 1.3275
No log 11.6 58 1.2712 -0.0194 1.2712 1.1275
No log 12.0 60 1.2794 0.0129 1.2794 1.1311
No log 12.4 62 1.5899 -0.0647 1.5899 1.2609
No log 12.8 64 1.5375 -0.0611 1.5375 1.2400
No log 13.2 66 1.2548 0.0492 1.2548 1.1202
No log 13.6 68 1.3531 0.0098 1.3531 1.1632
No log 14.0 70 1.8684 0.0198 1.8684 1.3669
No log 14.4 72 1.6653 -0.0151 1.6653 1.2905
No log 14.8 74 1.2460 -0.0451 1.2460 1.1162
No log 15.2 76 1.2619 -0.0142 1.2619 1.1233
No log 15.6 78 1.3941 -0.0191 1.3941 1.1807
No log 16.0 80 1.3740 0.0098 1.3740 1.1722
No log 16.4 82 1.3126 0.0121 1.3126 1.1457
No log 16.8 84 1.2240 0.0481 1.2240 1.1064
No log 17.2 86 1.1945 0.0481 1.1945 1.0929
No log 17.6 88 1.3870 -0.0029 1.3870 1.1777
No log 18.0 90 1.7161 -0.0387 1.7161 1.3100
No log 18.4 92 1.5895 0.0039 1.5895 1.2608
No log 18.8 94 1.3844 0.0315 1.3844 1.1766
No log 19.2 96 1.1998 0.0225 1.1998 1.0954
No log 19.6 98 1.3324 0.0413 1.3324 1.1543
No log 20.0 100 1.9011 -0.0626 1.9011 1.3788
No log 20.4 102 2.1538 -0.0443 2.1538 1.4676
No log 20.8 104 1.8204 -0.0813 1.8204 1.3492
No log 21.2 106 1.3637 -0.0519 1.3637 1.1678
No log 21.6 108 1.3829 -0.1102 1.3829 1.1760
No log 22.0 110 1.7146 -0.0431 1.7146 1.3094
No log 22.4 112 1.9225 0.0164 1.9225 1.3866
No log 22.8 114 1.6749 -0.0685 1.6749 1.2942
No log 23.2 116 1.2097 0.0121 1.2097 1.0999
No log 23.6 118 1.0423 -0.0787 1.0423 1.0210
No log 24.0 120 1.1068 -0.0090 1.1068 1.0520
No log 24.4 122 1.4163 -0.0638 1.4163 1.1901
No log 24.8 124 1.6966 -0.0025 1.6966 1.3025
No log 25.2 126 2.0721 -0.0286 2.0721 1.4395
No log 25.6 128 1.9702 -0.0452 1.9702 1.4036
No log 26.0 130 1.5155 -0.0111 1.5155 1.2310
No log 26.4 132 1.1327 -0.0367 1.1327 1.0643
No log 26.8 134 1.1147 -0.0367 1.1147 1.0558
No log 27.2 136 1.3213 0.0159 1.3213 1.1495
No log 27.6 138 1.7795 -0.0247 1.7795 1.3340
No log 28.0 140 1.9685 -0.0283 1.9685 1.4030
No log 28.4 142 1.7955 0.0128 1.7955 1.3400
No log 28.8 144 1.4074 -0.0630 1.4074 1.1864
No log 29.2 146 1.0932 -0.0424 1.0932 1.0456
No log 29.6 148 1.0764 0.0015 1.0764 1.0375
No log 30.0 150 1.2552 -0.0142 1.2552 1.1203
No log 30.4 152 1.7032 -0.0596 1.7032 1.3050
No log 30.8 154 2.0364 -0.0428 2.0364 1.4270
No log 31.2 156 2.0847 -0.0428 2.0847 1.4438
No log 31.6 158 1.8129 -0.0772 1.8129 1.3465
No log 32.0 160 1.6240 -0.0802 1.6240 1.2744
No log 32.4 162 1.3428 -0.0809 1.3428 1.1588
No log 32.8 164 1.2374 -0.1108 1.2374 1.1124
No log 33.2 166 1.2687 -0.0550 1.2687 1.1264
No log 33.6 168 1.3982 -0.0922 1.3982 1.1825
No log 34.0 170 1.4199 -0.0695 1.4199 1.1916
No log 34.4 172 1.3544 -0.0941 1.3544 1.1638
No log 34.8 174 1.4151 -0.0695 1.4151 1.1896
No log 35.2 176 1.3100 -0.0400 1.3100 1.1446
No log 35.6 178 1.2035 -0.0297 1.2035 1.0970
No log 36.0 180 1.1923 -0.1162 1.1923 1.0919
No log 36.4 182 1.2636 -0.1162 1.2636 1.1241
No log 36.8 184 1.5044 -0.0654 1.5044 1.2265
No log 37.2 186 1.7471 -0.0645 1.7471 1.3218
No log 37.6 188 1.7231 -0.0440 1.7231 1.3127
No log 38.0 190 1.5930 -0.0685 1.5930 1.2621
No log 38.4 192 1.4226 -0.0411 1.4226 1.1927
No log 38.8 194 1.3513 -0.0655 1.3513 1.1624
No log 39.2 196 1.1767 -0.0297 1.1767 1.0848
No log 39.6 198 1.1284 0.0044 1.1284 1.0623
No log 40.0 200 1.2612 -0.0647 1.2612 1.1230
No log 40.4 202 1.4621 -0.0685 1.4621 1.2092
No log 40.8 204 1.5112 -0.0431 1.5112 1.2293
No log 41.2 206 1.3915 -0.1094 1.3915 1.1796
No log 41.6 208 1.3490 -0.0224 1.3490 1.1615
No log 42.0 210 1.5284 -0.0838 1.5284 1.2363
No log 42.4 212 1.8279 -0.0247 1.8279 1.3520
No log 42.8 214 1.9406 -0.0278 1.9406 1.3930
No log 43.2 216 1.7960 -0.0069 1.7960 1.3402
No log 43.6 218 1.4355 -0.0040 1.4355 1.1981
No log 44.0 220 1.1458 -0.0451 1.1458 1.0704
No log 44.4 222 1.1065 -0.0336 1.1065 1.0519
No log 44.8 224 1.1617 -0.0424 1.1617 1.0778
No log 45.2 226 1.3616 -0.0252 1.3616 1.1669
No log 45.6 228 1.7002 -0.0242 1.7002 1.3039
No log 46.0 230 1.8570 -0.0081 1.8570 1.3627
No log 46.4 232 1.7917 -0.0072 1.7917 1.3385
No log 46.8 234 1.5834 -0.0603 1.5834 1.2583
No log 47.2 236 1.3955 -0.0501 1.3955 1.1813
No log 47.6 238 1.3574 -0.0446 1.3574 1.1651
No log 48.0 240 1.4044 -0.0199 1.4044 1.1851
No log 48.4 242 1.5141 -0.0576 1.5141 1.2305
No log 48.8 244 1.6628 -0.0631 1.6628 1.2895
No log 49.2 246 1.9170 -0.0447 1.9170 1.3845
No log 49.6 248 1.9698 -0.0083 1.9698 1.4035
No log 50.0 250 1.8830 0.0130 1.8830 1.3722
No log 50.4 252 1.6924 -0.0458 1.6924 1.3009
No log 50.8 254 1.4436 -0.0672 1.4436 1.2015
No log 51.2 256 1.1592 0.0044 1.1592 1.0767
No log 51.6 258 1.0351 -0.0362 1.0351 1.0174
No log 52.0 260 1.0467 0.0062 1.0467 1.0231
No log 52.4 262 1.1654 -0.0103 1.1654 1.0795
No log 52.8 264 1.3596 -0.0303 1.3596 1.1660
No log 53.2 266 1.6605 0.0013 1.6605 1.2886
No log 53.6 268 1.8502 -0.0232 1.8502 1.3602
No log 54.0 270 1.8298 -0.0242 1.8298 1.3527
No log 54.4 272 1.7284 -0.0013 1.7284 1.3147
No log 54.8 274 1.5157 -0.0835 1.5157 1.2311
No log 55.2 276 1.2845 -0.0844 1.2845 1.1334
No log 55.6 278 1.1682 -0.0151 1.1682 1.0808
No log 56.0 280 1.1210 0.0241 1.1210 1.0588
No log 56.4 282 1.1834 -0.0557 1.1834 1.0878
No log 56.8 284 1.3699 -0.1182 1.3699 1.1704
No log 57.2 286 1.5537 -0.0918 1.5537 1.2465
No log 57.6 288 1.7786 -0.0447 1.7786 1.3336
No log 58.0 290 1.9029 0.0130 1.9029 1.3794
No log 58.4 292 1.9120 0.0130 1.9120 1.3828
No log 58.8 294 1.8548 -0.0464 1.8548 1.3619
No log 59.2 296 1.7140 -0.0667 1.7140 1.3092
No log 59.6 298 1.5175 -0.0918 1.5175 1.2319
No log 60.0 300 1.4053 -0.1150 1.4053 1.1854
No log 60.4 302 1.2841 -0.0856 1.2841 1.1332
No log 60.8 304 1.2665 -0.0512 1.2665 1.1254
No log 61.2 306 1.3263 -0.0838 1.3263 1.1516
No log 61.6 308 1.4296 -0.0042 1.4296 1.1957
No log 62.0 310 1.5033 -0.0819 1.5033 1.2261
No log 62.4 312 1.5482 -0.0374 1.5482 1.2443
No log 62.8 314 1.5202 -0.0374 1.5202 1.2330
No log 63.2 316 1.4872 -0.0819 1.4872 1.2195
No log 63.6 318 1.4794 -0.0082 1.4794 1.2163
No log 64.0 320 1.4849 -0.0819 1.4849 1.2185
No log 64.4 322 1.5065 -0.0835 1.5065 1.2274
No log 64.8 324 1.5292 -0.1067 1.5292 1.2366
No log 65.2 326 1.5267 -0.1064 1.5267 1.2356
No log 65.6 328 1.5594 -0.0846 1.5594 1.2488
No log 66.0 330 1.5647 -0.0645 1.5647 1.2509
No log 66.4 332 1.5444 -0.1164 1.5444 1.2427
No log 66.8 334 1.5530 -0.1164 1.5530 1.2462
No log 67.2 336 1.5175 -0.1453 1.5175 1.2319
No log 67.6 338 1.4508 -0.1457 1.4508 1.2045
No log 68.0 340 1.4428 -0.1457 1.4428 1.2011
No log 68.4 342 1.4123 -0.1457 1.4123 1.1884
No log 68.8 344 1.3930 -0.1721 1.3930 1.1803
No log 69.2 346 1.3982 -0.1136 1.3982 1.1825
No log 69.6 348 1.3552 -0.1673 1.3552 1.1641
No log 70.0 350 1.3761 -0.1136 1.3761 1.1731
No log 70.4 352 1.4058 -0.0661 1.4058 1.1857
No log 70.8 354 1.3940 -0.1416 1.3940 1.1807
No log 71.2 356 1.3487 -0.1459 1.3487 1.1613
No log 71.6 358 1.3014 -0.0592 1.3014 1.1408
No log 72.0 360 1.2573 -0.0260 1.2573 1.1213
No log 72.4 362 1.2446 -0.0550 1.2446 1.1156
No log 72.8 364 1.2459 -0.0550 1.2459 1.1162
No log 73.2 366 1.3058 -0.0582 1.3058 1.1427
No log 73.6 368 1.3794 -0.1459 1.3794 1.1745
No log 74.0 370 1.4469 -0.0886 1.4469 1.2029
No log 74.4 372 1.4895 -0.0918 1.4895 1.2204
No log 74.8 374 1.5117 -0.0918 1.5117 1.2295
No log 75.2 376 1.5749 -0.0901 1.5749 1.2550
No log 75.6 378 1.6251 -0.0660 1.6251 1.2748
No log 76.0 380 1.6380 -0.0652 1.6380 1.2799
No log 76.4 382 1.6331 -0.0645 1.6331 1.2779
No log 76.8 384 1.6066 -0.0645 1.6066 1.2675
No log 77.2 386 1.5699 -0.0653 1.5699 1.2530
No log 77.6 388 1.5304 -0.0638 1.5304 1.2371
No log 78.0 390 1.4980 -0.0864 1.4980 1.2239
No log 78.4 392 1.4781 -0.0842 1.4781 1.2158
No log 78.8 394 1.4709 -0.0607 1.4709 1.2128
No log 79.2 396 1.4993 -0.0864 1.4993 1.2245
No log 79.6 398 1.5402 -0.0631 1.5402 1.2411
No log 80.0 400 1.5844 -0.0851 1.5844 1.2587
No log 80.4 402 1.5804 -0.0618 1.5804 1.2571
No log 80.8 404 1.5567 -0.0624 1.5567 1.2477
No log 81.2 406 1.5305 -0.0602 1.5305 1.2371
No log 81.6 408 1.4987 -0.0600 1.4987 1.2242
No log 82.0 410 1.4705 -0.0833 1.4705 1.2126
No log 82.4 412 1.4470 -0.0588 1.4470 1.2029
No log 82.8 414 1.4546 -0.0864 1.4546 1.2061
No log 83.2 416 1.4682 -0.0864 1.4682 1.2117
No log 83.6 418 1.4663 -0.0864 1.4663 1.2109
No log 84.0 420 1.4627 -0.0864 1.4627 1.2094
No log 84.4 422 1.4507 -0.1150 1.4507 1.2045
No log 84.8 424 1.4524 -0.1152 1.4524 1.2052
No log 85.2 426 1.4439 -0.1152 1.4439 1.2016
No log 85.6 428 1.4561 -0.1157 1.4561 1.2067
No log 86.0 430 1.4692 -0.0908 1.4692 1.2121
No log 86.4 432 1.4847 -0.0646 1.4847 1.2185
No log 86.8 434 1.4960 -0.0646 1.4960 1.2231
No log 87.2 436 1.4933 -0.0646 1.4933 1.2220
No log 87.6 438 1.4869 -0.0646 1.4869 1.2194
No log 88.0 440 1.4884 -0.0646 1.4884 1.2200
No log 88.4 442 1.4925 -0.0646 1.4925 1.2217
No log 88.8 444 1.4756 -0.0646 1.4756 1.2147
No log 89.2 446 1.4815 -0.0646 1.4815 1.2172
No log 89.6 448 1.4903 -0.0646 1.4903 1.2208
No log 90.0 450 1.5000 -0.0880 1.5000 1.2247
No log 90.4 452 1.5083 -0.0880 1.5083 1.2281
No log 90.8 454 1.5025 -0.0880 1.5025 1.2258
No log 91.2 456 1.4962 -0.0646 1.4962 1.2232
No log 91.6 458 1.4936 -0.0886 1.4936 1.2221
No log 92.0 460 1.4914 -0.0622 1.4914 1.2212
No log 92.4 462 1.4962 -0.0622 1.4962 1.2232
No log 92.8 464 1.5120 -0.0622 1.5120 1.2296
No log 93.2 466 1.5174 -0.0870 1.5174 1.2318
No log 93.6 468 1.5228 -0.0870 1.5228 1.2340
No log 94.0 470 1.5276 -0.0870 1.5276 1.2360
No log 94.4 472 1.5369 -0.0638 1.5369 1.2397
No log 94.8 474 1.5399 -0.0638 1.5399 1.2409
No log 95.2 476 1.5359 -0.0638 1.5359 1.2393
No log 95.6 478 1.5338 -0.0638 1.5338 1.2385
No log 96.0 480 1.5306 -0.0870 1.5306 1.2372
No log 96.4 482 1.5232 -0.0886 1.5232 1.2342
No log 96.8 484 1.5193 -0.0886 1.5193 1.2326
No log 97.2 486 1.5208 -0.0886 1.5208 1.2332
No log 97.6 488 1.5244 -0.0870 1.5244 1.2347
No log 98.0 490 1.5298 -0.0870 1.5298 1.2368
No log 98.4 492 1.5342 -0.0638 1.5342 1.2386
No log 98.8 494 1.5369 -0.0638 1.5369 1.2397
No log 99.2 496 1.5371 -0.0638 1.5371 1.2398
No log 99.6 498 1.5364 -0.0638 1.5364 1.2395
0.1474 100.0 500 1.5363 -0.0638 1.5363 1.2395

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
29
Safetensors
Model size
135M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for MayBashendy/ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run3_AugV5_k2_task3_organization

Finetuned
(3994)
this model