Arabic_FineTuningAraBERT_AugV4_k1_task3_organization_fold1

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4946
  • Qwk: 0.4762
  • Mse: 0.4946
  • Rmse: 0.7032

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.0690 2 3.1867 0.0 3.1867 1.7851
No log 0.1379 4 2.3147 0.0 2.3147 1.5214
No log 0.2069 6 1.5665 0.0 1.5665 1.2516
No log 0.2759 8 0.9093 0.0 0.9093 0.9536
No log 0.3448 10 0.6539 0.0 0.6539 0.8086
No log 0.4138 12 0.5793 0.0 0.5793 0.7611
No log 0.4828 14 0.6339 0.0 0.6339 0.7962
No log 0.5517 16 0.6884 0.0 0.6884 0.8297
No log 0.6207 18 0.7381 0.0 0.7381 0.8592
No log 0.6897 20 0.7674 0.0 0.7674 0.8760
No log 0.7586 22 0.7428 0.0 0.7428 0.8619
No log 0.8276 24 0.6849 0.0 0.6849 0.8276
No log 0.8966 26 0.5578 0.0 0.5578 0.7469
No log 0.9655 28 0.5315 0.0 0.5315 0.7290
No log 1.0345 30 0.5313 0.0 0.5313 0.7289
No log 1.1034 32 0.5025 0.0 0.5025 0.7089
No log 1.1724 34 0.5708 0.0 0.5708 0.7555
No log 1.2414 36 0.6111 0.0 0.6111 0.7817
No log 1.3103 38 0.6200 0.0 0.6200 0.7874
No log 1.3793 40 0.6308 0.0 0.6308 0.7942
No log 1.4483 42 0.6331 0.0 0.6331 0.7957
No log 1.5172 44 0.6592 0.0 0.6592 0.8119
No log 1.5862 46 0.6344 0.0 0.6344 0.7965
No log 1.6552 48 0.5837 0.0 0.5837 0.7640
No log 1.7241 50 0.5622 0.0 0.5622 0.7498
No log 1.7931 52 0.5390 0.0 0.5390 0.7341
No log 1.8621 54 0.5207 0.0 0.5207 0.7216
No log 1.9310 56 0.4790 0.2667 0.4790 0.6921
No log 2.0 58 0.4835 0.2667 0.4835 0.6953
No log 2.0690 60 0.4093 0.2667 0.4093 0.6398
No log 2.1379 62 0.3743 0.0 0.3743 0.6118
No log 2.2069 64 0.3839 0.0 0.3839 0.6196
No log 2.2759 66 0.4388 0.4660 0.4388 0.6624
No log 2.3448 68 0.4938 0.3803 0.4938 0.7027
No log 2.4138 70 0.4822 0.3803 0.4822 0.6944
No log 2.4828 72 0.3731 -0.0233 0.3731 0.6108
No log 2.5517 74 0.3704 0.5133 0.3704 0.6086
No log 2.6207 76 0.3588 0.5133 0.3588 0.5990
No log 2.6897 78 0.3701 0.2524 0.3701 0.6083
No log 2.7586 80 0.3575 0.7179 0.3575 0.5979
No log 2.8276 82 0.3978 0.5133 0.3978 0.6307
No log 2.8966 84 0.4016 0.5133 0.4016 0.6337
No log 2.9655 86 0.3733 0.4211 0.3733 0.6110
No log 3.0345 88 0.3647 0.5769 0.3647 0.6039
No log 3.1034 90 0.3696 0.5133 0.3696 0.6080
No log 3.1724 92 0.3939 0.4310 0.3939 0.6276
No log 3.2414 94 0.7108 0.3613 0.7108 0.8431
No log 3.3103 96 0.6034 0.3803 0.6034 0.7768
No log 3.3793 98 0.5066 0.4031 0.5066 0.7118
No log 3.4483 100 0.4184 0.2326 0.4184 0.6468
No log 3.5172 102 0.4620 0.5133 0.4620 0.6797
No log 3.5862 104 0.4257 0.2524 0.4257 0.6524
No log 3.6552 106 0.5222 0.4031 0.5222 0.7226
No log 3.7241 108 0.4335 0.0222 0.4335 0.6584
No log 3.7931 110 0.5705 0.4590 0.5705 0.7553
No log 3.8621 112 0.6288 0.4122 0.6288 0.7930
No log 3.9310 114 0.4974 0.0 0.4974 0.7053
No log 4.0 116 0.4816 0.0222 0.4816 0.6939
No log 4.0690 118 0.5016 0.0388 0.5016 0.7082
No log 4.1379 120 0.5484 0.2414 0.5484 0.7405
No log 4.2069 122 0.6196 0.2326 0.6196 0.7872
No log 4.2759 124 0.5264 0.0388 0.5264 0.7255
No log 4.3448 126 0.5611 0.1895 0.5611 0.7491
No log 4.4138 128 0.6152 0.4590 0.6152 0.7844
No log 4.4828 130 0.5480 0.1852 0.5480 0.7402
No log 4.5517 132 0.5392 0.0388 0.5392 0.7343
No log 4.6207 134 0.5962 0.0388 0.5962 0.7721
No log 4.6897 136 0.5504 0.0388 0.5504 0.7419
No log 4.7586 138 0.5309 0.2414 0.5309 0.7286
No log 4.8276 140 0.4675 0.0222 0.4675 0.6837
No log 4.8966 142 0.4921 0.5133 0.4921 0.7015
No log 4.9655 144 0.4698 0.5299 0.4698 0.6854
No log 5.0345 146 0.4799 0.2414 0.4799 0.6927
No log 5.1034 148 0.5425 0.2326 0.5425 0.7365
No log 5.1724 150 0.4992 0.2414 0.4992 0.7065
No log 5.2414 152 0.4567 0.4923 0.4567 0.6758
No log 5.3103 154 0.4588 0.3419 0.4588 0.6773
No log 5.3793 156 0.4510 0.5075 0.4510 0.6715
No log 5.4483 158 0.4346 0.3419 0.4346 0.6592
No log 5.5172 160 0.4679 0.3889 0.4679 0.6840
No log 5.5862 162 0.4541 0.4296 0.4541 0.6738
No log 5.6552 164 0.4411 0.4762 0.4411 0.6641
No log 5.7241 166 0.4369 0.4762 0.4369 0.6610
No log 5.7931 168 0.4318 0.3889 0.4318 0.6571
No log 5.8621 170 0.5034 0.2326 0.5034 0.7095
No log 5.9310 172 0.5360 0.2326 0.5360 0.7321
No log 6.0 174 0.5081 0.2326 0.5081 0.7128
No log 6.0690 176 0.4547 0.5299 0.4547 0.6743
No log 6.1379 178 0.6171 0.2143 0.6171 0.7855
No log 6.2069 180 0.6263 0.2143 0.6263 0.7914
No log 6.2759 182 0.4879 0.4296 0.4879 0.6985
No log 6.3448 184 0.4807 0.0388 0.4807 0.6933
No log 6.4138 186 0.5394 0.2326 0.5394 0.7344
No log 6.4828 188 0.4876 0.0388 0.4876 0.6983
No log 6.5517 190 0.4474 0.5926 0.4474 0.6689
No log 6.6207 192 0.4720 0.4296 0.4720 0.6870
No log 6.6897 194 0.4663 0.4296 0.4663 0.6829
No log 6.7586 196 0.4266 0.5926 0.4266 0.6531
No log 6.8276 198 0.4418 0.4107 0.4418 0.6647
No log 6.8966 200 0.4316 0.5299 0.4316 0.6570
No log 6.9655 202 0.4706 0.3889 0.4706 0.6860
No log 7.0345 204 0.5122 0.3889 0.5122 0.7157
No log 7.1034 206 0.4768 0.3889 0.4768 0.6905
No log 7.1724 208 0.4640 0.4923 0.4640 0.6812
No log 7.2414 210 0.4925 0.0388 0.4925 0.7018
No log 7.3103 212 0.4871 0.2143 0.4871 0.6979
No log 7.3793 214 0.4953 0.4762 0.4953 0.7038
No log 7.4483 216 0.5008 0.5455 0.5008 0.7076
No log 7.5172 218 0.5099 0.2143 0.5099 0.7141
No log 7.5862 220 0.5305 0.0517 0.5305 0.7283
No log 7.6552 222 0.5274 0.0388 0.5274 0.7262
No log 7.7241 224 0.5093 0.0388 0.5093 0.7137
No log 7.7931 226 0.4970 0.2143 0.4970 0.7050
No log 7.8621 228 0.5006 0.3889 0.5006 0.7075
No log 7.9310 230 0.5099 0.3889 0.5099 0.7141
No log 8.0 232 0.4934 0.5299 0.4934 0.7024
No log 8.0690 234 0.5005 0.0388 0.5005 0.7075
No log 8.1379 236 0.5542 0.0517 0.5542 0.7444
No log 8.2069 238 0.5732 0.0517 0.5732 0.7571
No log 8.2759 240 0.5439 0.0388 0.5439 0.7375
No log 8.3448 242 0.5069 0.0222 0.5069 0.7119
No log 8.4138 244 0.4908 0.1852 0.4908 0.7006
No log 8.4828 246 0.4965 0.4762 0.4965 0.7046
No log 8.5517 248 0.4940 0.5299 0.4940 0.7029
No log 8.6207 250 0.4961 0.2222 0.4961 0.7044
No log 8.6897 252 0.5214 0.0388 0.5214 0.7221
No log 8.7586 254 0.5402 0.0388 0.5402 0.7350
No log 8.8276 256 0.5321 0.0388 0.5321 0.7294
No log 8.8966 258 0.5114 0.0388 0.5114 0.7151
No log 8.9655 260 0.5036 0.0388 0.5036 0.7096
No log 9.0345 262 0.4981 0.2143 0.4982 0.7058
No log 9.1034 264 0.4945 0.2143 0.4945 0.7032
No log 9.1724 266 0.4943 0.2143 0.4943 0.7031
No log 9.2414 268 0.4927 0.2143 0.4927 0.7019
No log 9.3103 270 0.4908 0.5299 0.4908 0.7006
No log 9.3793 272 0.4915 0.4762 0.4915 0.7011
No log 9.4483 274 0.4947 0.4762 0.4947 0.7034
No log 9.5172 276 0.4989 0.4296 0.4989 0.7063
No log 9.5862 278 0.5002 0.4296 0.5002 0.7073
No log 9.6552 280 0.4993 0.4296 0.4993 0.7066
No log 9.7241 282 0.4979 0.4762 0.4979 0.7056
No log 9.7931 284 0.4971 0.4762 0.4971 0.7050
No log 9.8621 286 0.4955 0.4762 0.4955 0.7039
No log 9.9310 288 0.4948 0.4762 0.4948 0.7034
No log 10.0 290 0.4946 0.4762 0.4946 0.7032

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
135M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for MayBashendy/Arabic_FineTuningAraBERT_AugV4_k1_task3_organization_fold1

Finetuned
(3994)
this model