Arabic_FineTuningAraBERT_AugV4_k1_task3_organization_fold1
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4946
- Qwk: 0.4762
- Mse: 0.4946
- Rmse: 0.7032
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.0690 | 2 | 3.1867 | 0.0 | 3.1867 | 1.7851 |
No log | 0.1379 | 4 | 2.3147 | 0.0 | 2.3147 | 1.5214 |
No log | 0.2069 | 6 | 1.5665 | 0.0 | 1.5665 | 1.2516 |
No log | 0.2759 | 8 | 0.9093 | 0.0 | 0.9093 | 0.9536 |
No log | 0.3448 | 10 | 0.6539 | 0.0 | 0.6539 | 0.8086 |
No log | 0.4138 | 12 | 0.5793 | 0.0 | 0.5793 | 0.7611 |
No log | 0.4828 | 14 | 0.6339 | 0.0 | 0.6339 | 0.7962 |
No log | 0.5517 | 16 | 0.6884 | 0.0 | 0.6884 | 0.8297 |
No log | 0.6207 | 18 | 0.7381 | 0.0 | 0.7381 | 0.8592 |
No log | 0.6897 | 20 | 0.7674 | 0.0 | 0.7674 | 0.8760 |
No log | 0.7586 | 22 | 0.7428 | 0.0 | 0.7428 | 0.8619 |
No log | 0.8276 | 24 | 0.6849 | 0.0 | 0.6849 | 0.8276 |
No log | 0.8966 | 26 | 0.5578 | 0.0 | 0.5578 | 0.7469 |
No log | 0.9655 | 28 | 0.5315 | 0.0 | 0.5315 | 0.7290 |
No log | 1.0345 | 30 | 0.5313 | 0.0 | 0.5313 | 0.7289 |
No log | 1.1034 | 32 | 0.5025 | 0.0 | 0.5025 | 0.7089 |
No log | 1.1724 | 34 | 0.5708 | 0.0 | 0.5708 | 0.7555 |
No log | 1.2414 | 36 | 0.6111 | 0.0 | 0.6111 | 0.7817 |
No log | 1.3103 | 38 | 0.6200 | 0.0 | 0.6200 | 0.7874 |
No log | 1.3793 | 40 | 0.6308 | 0.0 | 0.6308 | 0.7942 |
No log | 1.4483 | 42 | 0.6331 | 0.0 | 0.6331 | 0.7957 |
No log | 1.5172 | 44 | 0.6592 | 0.0 | 0.6592 | 0.8119 |
No log | 1.5862 | 46 | 0.6344 | 0.0 | 0.6344 | 0.7965 |
No log | 1.6552 | 48 | 0.5837 | 0.0 | 0.5837 | 0.7640 |
No log | 1.7241 | 50 | 0.5622 | 0.0 | 0.5622 | 0.7498 |
No log | 1.7931 | 52 | 0.5390 | 0.0 | 0.5390 | 0.7341 |
No log | 1.8621 | 54 | 0.5207 | 0.0 | 0.5207 | 0.7216 |
No log | 1.9310 | 56 | 0.4790 | 0.2667 | 0.4790 | 0.6921 |
No log | 2.0 | 58 | 0.4835 | 0.2667 | 0.4835 | 0.6953 |
No log | 2.0690 | 60 | 0.4093 | 0.2667 | 0.4093 | 0.6398 |
No log | 2.1379 | 62 | 0.3743 | 0.0 | 0.3743 | 0.6118 |
No log | 2.2069 | 64 | 0.3839 | 0.0 | 0.3839 | 0.6196 |
No log | 2.2759 | 66 | 0.4388 | 0.4660 | 0.4388 | 0.6624 |
No log | 2.3448 | 68 | 0.4938 | 0.3803 | 0.4938 | 0.7027 |
No log | 2.4138 | 70 | 0.4822 | 0.3803 | 0.4822 | 0.6944 |
No log | 2.4828 | 72 | 0.3731 | -0.0233 | 0.3731 | 0.6108 |
No log | 2.5517 | 74 | 0.3704 | 0.5133 | 0.3704 | 0.6086 |
No log | 2.6207 | 76 | 0.3588 | 0.5133 | 0.3588 | 0.5990 |
No log | 2.6897 | 78 | 0.3701 | 0.2524 | 0.3701 | 0.6083 |
No log | 2.7586 | 80 | 0.3575 | 0.7179 | 0.3575 | 0.5979 |
No log | 2.8276 | 82 | 0.3978 | 0.5133 | 0.3978 | 0.6307 |
No log | 2.8966 | 84 | 0.4016 | 0.5133 | 0.4016 | 0.6337 |
No log | 2.9655 | 86 | 0.3733 | 0.4211 | 0.3733 | 0.6110 |
No log | 3.0345 | 88 | 0.3647 | 0.5769 | 0.3647 | 0.6039 |
No log | 3.1034 | 90 | 0.3696 | 0.5133 | 0.3696 | 0.6080 |
No log | 3.1724 | 92 | 0.3939 | 0.4310 | 0.3939 | 0.6276 |
No log | 3.2414 | 94 | 0.7108 | 0.3613 | 0.7108 | 0.8431 |
No log | 3.3103 | 96 | 0.6034 | 0.3803 | 0.6034 | 0.7768 |
No log | 3.3793 | 98 | 0.5066 | 0.4031 | 0.5066 | 0.7118 |
No log | 3.4483 | 100 | 0.4184 | 0.2326 | 0.4184 | 0.6468 |
No log | 3.5172 | 102 | 0.4620 | 0.5133 | 0.4620 | 0.6797 |
No log | 3.5862 | 104 | 0.4257 | 0.2524 | 0.4257 | 0.6524 |
No log | 3.6552 | 106 | 0.5222 | 0.4031 | 0.5222 | 0.7226 |
No log | 3.7241 | 108 | 0.4335 | 0.0222 | 0.4335 | 0.6584 |
No log | 3.7931 | 110 | 0.5705 | 0.4590 | 0.5705 | 0.7553 |
No log | 3.8621 | 112 | 0.6288 | 0.4122 | 0.6288 | 0.7930 |
No log | 3.9310 | 114 | 0.4974 | 0.0 | 0.4974 | 0.7053 |
No log | 4.0 | 116 | 0.4816 | 0.0222 | 0.4816 | 0.6939 |
No log | 4.0690 | 118 | 0.5016 | 0.0388 | 0.5016 | 0.7082 |
No log | 4.1379 | 120 | 0.5484 | 0.2414 | 0.5484 | 0.7405 |
No log | 4.2069 | 122 | 0.6196 | 0.2326 | 0.6196 | 0.7872 |
No log | 4.2759 | 124 | 0.5264 | 0.0388 | 0.5264 | 0.7255 |
No log | 4.3448 | 126 | 0.5611 | 0.1895 | 0.5611 | 0.7491 |
No log | 4.4138 | 128 | 0.6152 | 0.4590 | 0.6152 | 0.7844 |
No log | 4.4828 | 130 | 0.5480 | 0.1852 | 0.5480 | 0.7402 |
No log | 4.5517 | 132 | 0.5392 | 0.0388 | 0.5392 | 0.7343 |
No log | 4.6207 | 134 | 0.5962 | 0.0388 | 0.5962 | 0.7721 |
No log | 4.6897 | 136 | 0.5504 | 0.0388 | 0.5504 | 0.7419 |
No log | 4.7586 | 138 | 0.5309 | 0.2414 | 0.5309 | 0.7286 |
No log | 4.8276 | 140 | 0.4675 | 0.0222 | 0.4675 | 0.6837 |
No log | 4.8966 | 142 | 0.4921 | 0.5133 | 0.4921 | 0.7015 |
No log | 4.9655 | 144 | 0.4698 | 0.5299 | 0.4698 | 0.6854 |
No log | 5.0345 | 146 | 0.4799 | 0.2414 | 0.4799 | 0.6927 |
No log | 5.1034 | 148 | 0.5425 | 0.2326 | 0.5425 | 0.7365 |
No log | 5.1724 | 150 | 0.4992 | 0.2414 | 0.4992 | 0.7065 |
No log | 5.2414 | 152 | 0.4567 | 0.4923 | 0.4567 | 0.6758 |
No log | 5.3103 | 154 | 0.4588 | 0.3419 | 0.4588 | 0.6773 |
No log | 5.3793 | 156 | 0.4510 | 0.5075 | 0.4510 | 0.6715 |
No log | 5.4483 | 158 | 0.4346 | 0.3419 | 0.4346 | 0.6592 |
No log | 5.5172 | 160 | 0.4679 | 0.3889 | 0.4679 | 0.6840 |
No log | 5.5862 | 162 | 0.4541 | 0.4296 | 0.4541 | 0.6738 |
No log | 5.6552 | 164 | 0.4411 | 0.4762 | 0.4411 | 0.6641 |
No log | 5.7241 | 166 | 0.4369 | 0.4762 | 0.4369 | 0.6610 |
No log | 5.7931 | 168 | 0.4318 | 0.3889 | 0.4318 | 0.6571 |
No log | 5.8621 | 170 | 0.5034 | 0.2326 | 0.5034 | 0.7095 |
No log | 5.9310 | 172 | 0.5360 | 0.2326 | 0.5360 | 0.7321 |
No log | 6.0 | 174 | 0.5081 | 0.2326 | 0.5081 | 0.7128 |
No log | 6.0690 | 176 | 0.4547 | 0.5299 | 0.4547 | 0.6743 |
No log | 6.1379 | 178 | 0.6171 | 0.2143 | 0.6171 | 0.7855 |
No log | 6.2069 | 180 | 0.6263 | 0.2143 | 0.6263 | 0.7914 |
No log | 6.2759 | 182 | 0.4879 | 0.4296 | 0.4879 | 0.6985 |
No log | 6.3448 | 184 | 0.4807 | 0.0388 | 0.4807 | 0.6933 |
No log | 6.4138 | 186 | 0.5394 | 0.2326 | 0.5394 | 0.7344 |
No log | 6.4828 | 188 | 0.4876 | 0.0388 | 0.4876 | 0.6983 |
No log | 6.5517 | 190 | 0.4474 | 0.5926 | 0.4474 | 0.6689 |
No log | 6.6207 | 192 | 0.4720 | 0.4296 | 0.4720 | 0.6870 |
No log | 6.6897 | 194 | 0.4663 | 0.4296 | 0.4663 | 0.6829 |
No log | 6.7586 | 196 | 0.4266 | 0.5926 | 0.4266 | 0.6531 |
No log | 6.8276 | 198 | 0.4418 | 0.4107 | 0.4418 | 0.6647 |
No log | 6.8966 | 200 | 0.4316 | 0.5299 | 0.4316 | 0.6570 |
No log | 6.9655 | 202 | 0.4706 | 0.3889 | 0.4706 | 0.6860 |
No log | 7.0345 | 204 | 0.5122 | 0.3889 | 0.5122 | 0.7157 |
No log | 7.1034 | 206 | 0.4768 | 0.3889 | 0.4768 | 0.6905 |
No log | 7.1724 | 208 | 0.4640 | 0.4923 | 0.4640 | 0.6812 |
No log | 7.2414 | 210 | 0.4925 | 0.0388 | 0.4925 | 0.7018 |
No log | 7.3103 | 212 | 0.4871 | 0.2143 | 0.4871 | 0.6979 |
No log | 7.3793 | 214 | 0.4953 | 0.4762 | 0.4953 | 0.7038 |
No log | 7.4483 | 216 | 0.5008 | 0.5455 | 0.5008 | 0.7076 |
No log | 7.5172 | 218 | 0.5099 | 0.2143 | 0.5099 | 0.7141 |
No log | 7.5862 | 220 | 0.5305 | 0.0517 | 0.5305 | 0.7283 |
No log | 7.6552 | 222 | 0.5274 | 0.0388 | 0.5274 | 0.7262 |
No log | 7.7241 | 224 | 0.5093 | 0.0388 | 0.5093 | 0.7137 |
No log | 7.7931 | 226 | 0.4970 | 0.2143 | 0.4970 | 0.7050 |
No log | 7.8621 | 228 | 0.5006 | 0.3889 | 0.5006 | 0.7075 |
No log | 7.9310 | 230 | 0.5099 | 0.3889 | 0.5099 | 0.7141 |
No log | 8.0 | 232 | 0.4934 | 0.5299 | 0.4934 | 0.7024 |
No log | 8.0690 | 234 | 0.5005 | 0.0388 | 0.5005 | 0.7075 |
No log | 8.1379 | 236 | 0.5542 | 0.0517 | 0.5542 | 0.7444 |
No log | 8.2069 | 238 | 0.5732 | 0.0517 | 0.5732 | 0.7571 |
No log | 8.2759 | 240 | 0.5439 | 0.0388 | 0.5439 | 0.7375 |
No log | 8.3448 | 242 | 0.5069 | 0.0222 | 0.5069 | 0.7119 |
No log | 8.4138 | 244 | 0.4908 | 0.1852 | 0.4908 | 0.7006 |
No log | 8.4828 | 246 | 0.4965 | 0.4762 | 0.4965 | 0.7046 |
No log | 8.5517 | 248 | 0.4940 | 0.5299 | 0.4940 | 0.7029 |
No log | 8.6207 | 250 | 0.4961 | 0.2222 | 0.4961 | 0.7044 |
No log | 8.6897 | 252 | 0.5214 | 0.0388 | 0.5214 | 0.7221 |
No log | 8.7586 | 254 | 0.5402 | 0.0388 | 0.5402 | 0.7350 |
No log | 8.8276 | 256 | 0.5321 | 0.0388 | 0.5321 | 0.7294 |
No log | 8.8966 | 258 | 0.5114 | 0.0388 | 0.5114 | 0.7151 |
No log | 8.9655 | 260 | 0.5036 | 0.0388 | 0.5036 | 0.7096 |
No log | 9.0345 | 262 | 0.4981 | 0.2143 | 0.4982 | 0.7058 |
No log | 9.1034 | 264 | 0.4945 | 0.2143 | 0.4945 | 0.7032 |
No log | 9.1724 | 266 | 0.4943 | 0.2143 | 0.4943 | 0.7031 |
No log | 9.2414 | 268 | 0.4927 | 0.2143 | 0.4927 | 0.7019 |
No log | 9.3103 | 270 | 0.4908 | 0.5299 | 0.4908 | 0.7006 |
No log | 9.3793 | 272 | 0.4915 | 0.4762 | 0.4915 | 0.7011 |
No log | 9.4483 | 274 | 0.4947 | 0.4762 | 0.4947 | 0.7034 |
No log | 9.5172 | 276 | 0.4989 | 0.4296 | 0.4989 | 0.7063 |
No log | 9.5862 | 278 | 0.5002 | 0.4296 | 0.5002 | 0.7073 |
No log | 9.6552 | 280 | 0.4993 | 0.4296 | 0.4993 | 0.7066 |
No log | 9.7241 | 282 | 0.4979 | 0.4762 | 0.4979 | 0.7056 |
No log | 9.7931 | 284 | 0.4971 | 0.4762 | 0.4971 | 0.7050 |
No log | 9.8621 | 286 | 0.4955 | 0.4762 | 0.4955 | 0.7039 |
No log | 9.9310 | 288 | 0.4948 | 0.4762 | 0.4948 | 0.7034 |
No log | 10.0 | 290 | 0.4946 | 0.4762 | 0.4946 | 0.7032 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 14
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for MayBashendy/Arabic_FineTuningAraBERT_AugV4_k1_task3_organization_fold1
Base model
aubmindlab/bert-base-arabertv02