Model Card for Model ID
How to Get Started with the Model
To use this adapter:
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM
# Load base model in 4 bit
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", load_in_4bit=True)
# Wrap model with pretrained model weights
config = PeftConfig.from_pretrained("MaziyarPanahi/Llama-2-7b-hf-codealpaca-4bit")
model = PeftModel.from_pretrained(model, "MaziyarPanahi/Llama-2-7b-hf-codealpaca-4bit", config=config)
Prompt Template:
Below is an instruction that describes a task, paired with an input
that provides further context. Write a response that appropriately
completes the request.
### Instruction: {instruction}
### Input: {input}
### Response:
Training procedure
The following bitsandbytes
quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
Framework versions
- PEFT 0.7.1
- Downloads last month
- 10
Model tree for MaziyarPanahi/Llama-2-7b-hf-codealpaca-4bit
Base model
meta-llama/Llama-2-7b-hf