xlm-roberta-base fine-tuned on custom cross‑encoder dataset

This is a Cross Encoder model finetuned from FacebookAI/xlm-roberta-base on the reranker_10k dataset using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

Model Details

Model Description

  • Model Type: Cross Encoder
  • Base model: FacebookAI/xlm-roberta-base
  • Maximum Sequence Length: 512 tokens
  • Number of Output Labels: 1 label
  • Training Dataset:
  • Language: multilingual
  • License: apache-2.0

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("MercuraTech/Reranker_10k_base")
# Get scores for pairs of texts
pairs = [
    ['Elektroschweißband für Fixpunkt DN 70 Elektroschweißband für Fixpunkt - Zur Fixpunktbefestigung von Rohren in Verbindung mit Rohrschellen - Einteilig - Nennweite: DN 70 liefern und montieren', 'Geberit PE Elektroschweißband für Fixpunkt DN70'],
    ['Elektroschweißband für Fixpunkt DN 70 Elektroschweißband für Fixpunkt - Zur Fixpunktbefestigung von Rohren in Verbindung mit Rohrschellen - Einteilig - Nennweite: DN 70 liefern und montieren', 'Geberit Rohrschelle gedämmt Gewindemuffe M8/10 DN70'],
    ['Elektroschweißband für Fixpunkt DN 70 Elektroschweißband für Fixpunkt - Zur Fixpunktbefestigung von Rohren in Verbindung mit Rohrschellen - Einteilig - Nennweite: DN 70 liefern und montieren', 'Geberit PE Steckmuffe mit Lippendichtung DN70'],
    ['Elektroschweißband für Fixpunkt DN 70 Elektroschweißband für Fixpunkt - Zur Fixpunktbefestigung von Rohren in Verbindung mit Rohrschellen - Einteilig - Nennweite: DN 70 liefern und montieren', 'Geberit PE Elektroschweißband für Fixpunkt DN56'],
    ['Elektroschweißband für Fixpunkt DN 70 Elektroschweißband für Fixpunkt - Zur Fixpunktbefestigung von Rohren in Verbindung mit Rohrschellen - Einteilig - Nennweite: DN 70 liefern und montieren', 'Geberit PE Elektroschweißband für Fixpunkt DN90'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'Elektroschweißband für Fixpunkt DN 70 Elektroschweißband für Fixpunkt - Zur Fixpunktbefestigung von Rohren in Verbindung mit Rohrschellen - Einteilig - Nennweite: DN 70 liefern und montieren',
    [
        'Geberit PE Elektroschweißband für Fixpunkt DN70',
        'Geberit Rohrschelle gedämmt Gewindemuffe M8/10 DN70',
        'Geberit PE Steckmuffe mit Lippendichtung DN70',
        'Geberit PE Elektroschweißband für Fixpunkt DN56',
        'Geberit PE Elektroschweißband für Fixpunkt DN90',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

Training Details

Training Dataset

reranker_10k

  • Dataset: reranker_10k at 28cd3fd
  • Size: 9,632 training samples
  • Columns: query, passage, and label
  • Approximate statistics based on the first 1000 samples:
    query passage label
    type string string int
    details
    • min: 23 characters
    • mean: 326.49 characters
    • max: 1733 characters
    • min: 21 characters
    • mean: 58.05 characters
    • max: 81 characters
    • 0: ~90.40%
    • 1: ~9.60%
  • Samples:
    query passage label
    Elektroschweißband für Fixpunkt DN 70 Elektroschweißband für Fixpunkt - Zur Fixpunktbefestigung von Rohren in Verbindung mit Rohrschellen - Einteilig - Nennweite: DN 70 liefern und montieren Geberit PE Elektroschweißband für Fixpunkt DN70 1
    Elektroschweißband für Fixpunkt DN 70 Elektroschweißband für Fixpunkt - Zur Fixpunktbefestigung von Rohren in Verbindung mit Rohrschellen - Einteilig - Nennweite: DN 70 liefern und montieren Geberit Rohrschelle gedämmt Gewindemuffe M8/10 DN70 0
    Elektroschweißband für Fixpunkt DN 70 Elektroschweißband für Fixpunkt - Zur Fixpunktbefestigung von Rohren in Verbindung mit Rohrschellen - Einteilig - Nennweite: DN 70 liefern und montieren Geberit PE Steckmuffe mit Lippendichtung DN70 0
  • Loss: BinaryCrossEntropyLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "pos_weight": 9.561403274536133
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 64
  • learning_rate: 2e-05
  • warmup_ratio: 0.1
  • fp16: True
  • dataloader_num_workers: 8

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 8
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss
0.0033 1 0.8052
1.6611 500 1.2767

Framework Versions

  • Python: 3.9.5
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
11
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for MercuraTech/Reranker_10k_base

Finetuned
(3071)
this model
Finetunes
1 model