ner_model

This model is a fine-tuned version of mschiesser/ner-bert-german on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3135
  • Precision: 0.0517
  • Recall: 0.0070
  • F1: 0.0123
  • Accuracy: 0.9287

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0 0 2.5309 0.0 0.0 0.0 0.0171
No log 1.0 5 0.4653 0.0 0.0 0.0 0.9205
No log 2.0 10 0.3807 0.0 0.0 0.0 0.9205
No log 3.0 15 0.3448 0.0323 0.0047 0.0081 0.9269
No log 4.0 20 0.3248 0.0455 0.0070 0.0121 0.9283
No log 5.0 25 0.3135 0.0517 0.0070 0.0123 0.9287

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1
  • Datasets 3.1.0
  • Tokenizers 0.20.2
Downloads last month
8
Safetensors
Model size
177M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for MichaelSargious/ner_model

Finetuned
(3)
this model