herbert-ner-lora-sensitive

This model is a fine-tuned version of pczarnik/herbert-base-ner on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0070
  • Precision: 0.8622
  • Recall: 0.8596
  • F1: 0.8609

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
No log 1.0 315 0.0148 0.8076 0.7253 0.7642
0.1305 2.0 630 0.0096 0.8339 0.8133 0.8234
0.1305 3.0 945 0.0079 0.8538 0.8472 0.8505
0.0112 4.0 1260 0.0072 0.8556 0.8596 0.8576
0.0092 5.0 1575 0.0070 0.8622 0.8596 0.8609

Framework versions

  • PEFT 0.12.0
  • Transformers 4.50.3
  • Pytorch 2.4.1
  • Datasets 2.21.0
  • Tokenizers 0.21.1
Downloads last month
27
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Michal0607/herbert-ner-lora-sensitive

Adapter
(4)
this model