YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

**StudioGAN** is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation. StudioGAN aims to offer an identical playground for modern GANs so that machine learning researchers can readily compare and analyze a new idea.

This hub provides all the checkpoints we used to create the GAN benchmarks below.

Please visit our github repository (PyTorch-StudioGAN) for more details.

License

PyTorch-StudioGAN is an open-source library under the MIT license (MIT). However, portions of the library are avaiiable under distinct license terms: StyleGAN2, StyleGAN2-ADA, and StyleGAN3 are licensed under NVIDIA source code license, and PyTorch-FID is licensed under Apache License.

Citation

StudioGAN is established for the following research projects. Please cite our work if you use StudioGAN.

@article{kang2022StudioGAN,
  title   = {{StudioGAN: A Taxonomy and Benchmark of GANs for Image Synthesis}},
  author  = {MinGuk Kang and Joonghyuk Shin and Jaesik Park},
  journal = {2206.09479 (arXiv)},
  year    = {2022}
}
@inproceedings{kang2021ReACGAN,
  title   = {{Rebooting ACGAN: Auxiliary Classifier GANs with Stable Training}},
  author  = {Minguk Kang, Woohyeon Shim, Minsu Cho, and Jaesik Park},
  journal = {Conference on Neural Information Processing Systems (NeurIPS)},
  year    = {2021}
}
@inproceedings{kang2020ContraGAN,
  title   = {{ContraGAN: Contrastive Learning for Conditional Image Generation}},
  author  = {Minguk Kang and Jaesik Park},
  journal = {Conference on Neural Information Processing Systems (NeurIPS)},
  year    = {2020}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.