MoLA-LM: Mixture of LoRA Adapters LLM
MoLA-LM combines multiple LoRA adapters with an intelligent router to automatically select the best adapter for each input prompt. This approach enables specialized performance across different tasks while maintaining efficiency.
⚠️ This is a test model
Evals are coming...
Model Details
- Model Type: Mixture of LoRA Adapters Language Model
- Base Model: Qwen/Qwen2.5-3B-Instruct
- Total Adapters: 11
- Architecture: Custom MoLAForCausalLM with automatic adapter routing
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the model (trust_remote_code=True is required for custom architecture)
model = AutoModelForCausalLM.from_pretrained(
"MoLA-LLM/MoLA-11x3b-v1",
trust_remote_code=True,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("MoLA-LLM/MoLA-11x3b-v1", trust_remote_code=True)
# Use like any other language model - adapter selection is automatic
prompt = "Write a Python function to calculate fibonacci numbers"
messages = [{"role": "user", "content": prompt}]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(model.device)
outputs = model.generate(**inputs, max_new_tokens=100, temperature=0.7, do_sample=True)
response = tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
print(f"Selected LoRA: {model.get_current_lora()}")
print(response)
You can also use load_in_4bit and load_in_8bit directly when loading!
Training Details
This all ya get for now: (Mad respect to the ogs)
Available LoRA Adapters
The model includes specialized adapters for:
- reasoning
- planning
- information_seeking
- math
- creative_writing
- brainstorming
- advice_seeking
- role_playing
- data_analysis
- coding
- editing
Architecture
The MoLA-LM architecture consists of:
- Base Model: Qwen/Qwen2.5-3B-Instruct
- Router Network: Sentence transformer + MLP for adapter selection
- LoRA Adapters: 11 task-specific fine-tuned adapters
- Dynamic Switching: Automatic adapter application based on input
Technical Details
- Router Input: 512-token context window for task classification
- Adapter Count: 11 specialized LoRA adapters
- Selection Method: Argmax over router logits
- Memory Efficient: Only one adapter active at a time
Paper coming soon™
- Downloads last month
- 58
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support